DNA Triplet Energies by Free Energy Perturbation Theory.

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL
Journal of Chemical Theory and Computation Pub Date : 2025-02-11 Epub Date: 2025-01-24 DOI:10.1021/acs.jctc.4c01583
Rafael García-Messeguer, Miriam Navarrete-Miguel, Sergio Martí, Iñaki Tuñón, Daniel Roca-Sanjuán
{"title":"DNA Triplet Energies by Free Energy Perturbation Theory.","authors":"Rafael García-Messeguer, Miriam Navarrete-Miguel, Sergio Martí, Iñaki Tuñón, Daniel Roca-Sanjuán","doi":"10.1021/acs.jctc.4c01583","DOIUrl":null,"url":null,"abstract":"<p><p>Determining the energetics of triplet electronic states of nucleobases in the biological macromolecular environment of nucleic acids is essential for an accurate description of the mechanism of photosensitization and the design of drugs for cancer treatment. In this work, we aim at developing a methodological approach to obtain accurate free energies of triplets in DNA beyond the state of the art, able to reproduce the decrease of triplet energies measured experimentally for <i>T</i> in DNA (270 kJ/mol) vs in the isolated nucleotide in aqueous solution (310 kJ/mol). For such purposes, we adapt the free energy perturbation method to compute the free energy related to the transformation of a pure singlet state into a pure triplet state via \"alchemical\" intermediates with mixed singlet-triplet nature. By this means, standard deviation errors are only a few kJ/mol, contrary to the large errors of tenths of kJ/mol obtained by averaging the singlet and triplet energies derived from molecular dynamics simulations. The reduced statistical errors obtained by the free energy perturbation approach allow us to rationalize with confidence the triplet stabilization observed experimentally when comparing the thymine nucleotide and thymine in DNA. Spin polarization rather than excimer interactions between the π-stacked nucleobases originates the lower values of the triplet energies in DNA. The developed approach implemented in QM<sup>3</sup> shall be useful for determining free energies of triplets and other states like ionic or charge separation states in any other macromolecular system with impact in biomedicine and materials science.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"1353-1359"},"PeriodicalIF":5.7000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01583","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Determining the energetics of triplet electronic states of nucleobases in the biological macromolecular environment of nucleic acids is essential for an accurate description of the mechanism of photosensitization and the design of drugs for cancer treatment. In this work, we aim at developing a methodological approach to obtain accurate free energies of triplets in DNA beyond the state of the art, able to reproduce the decrease of triplet energies measured experimentally for T in DNA (270 kJ/mol) vs in the isolated nucleotide in aqueous solution (310 kJ/mol). For such purposes, we adapt the free energy perturbation method to compute the free energy related to the transformation of a pure singlet state into a pure triplet state via "alchemical" intermediates with mixed singlet-triplet nature. By this means, standard deviation errors are only a few kJ/mol, contrary to the large errors of tenths of kJ/mol obtained by averaging the singlet and triplet energies derived from molecular dynamics simulations. The reduced statistical errors obtained by the free energy perturbation approach allow us to rationalize with confidence the triplet stabilization observed experimentally when comparing the thymine nucleotide and thymine in DNA. Spin polarization rather than excimer interactions between the π-stacked nucleobases originates the lower values of the triplet energies in DNA. The developed approach implemented in QM3 shall be useful for determining free energies of triplets and other states like ionic or charge separation states in any other macromolecular system with impact in biomedicine and materials science.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信