Inulin Dehydration to 5-HMF in Deep Eutectic Solvents Catalyzed by Acidic Ionic Liquids Under Mild Conditions.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-01-24 DOI:10.1002/cssc.202402522
Salvatore Marullo, Giovanna Raia, Josh J Bailey, H Q Nimal Gunaratne, Francesca D'Anna
{"title":"Inulin Dehydration to 5-HMF in Deep Eutectic Solvents Catalyzed by Acidic Ionic Liquids Under Mild Conditions.","authors":"Salvatore Marullo, Giovanna Raia, Josh J Bailey, H Q Nimal Gunaratne, Francesca D'Anna","doi":"10.1002/cssc.202402522","DOIUrl":null,"url":null,"abstract":"<p><p>Valorization of carbohydrate-rich biomass by conversion into industrially relevant products is at the forefront of research in sustainable chemistry. In this work, we studied the inulin conversion into 5-hydroxymethylfurfural, in deep eutectic solvents, in the presence of acidic task-specific ionic liquids as catalysts. We employed aliphatic and aromatic ionic liquids as catalysts, and choline chloride-based deep eutectic solvents bearing glycols or carboxylic acids, as solvents. The reactions were performed in a biphasic system, with acetone as a benign extracting solvent, enabling continuous extraction of 5-HMF. We aimed to find the best experimental conditions for this transformation, in terms of catalyst loading, solvent, reaction time and temperature to achieve an economical and energy efficient process. We also analyzed the results in terms of solvent viscosity and structural organization as well as catalysts acidity, to elucidate which structural features mostly favour the reaction. Under optimized conditions, we obtained a yield in 5-HMF of 71 %, at 80 °C in 3 h. Our system can be scaled up and recycled three times with no loss in yield. Finally, comparison with the literature shows that our system achieves a higher yield under milder conditions than most protocols so far reported for the same transformation.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402522"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402522","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Valorization of carbohydrate-rich biomass by conversion into industrially relevant products is at the forefront of research in sustainable chemistry. In this work, we studied the inulin conversion into 5-hydroxymethylfurfural, in deep eutectic solvents, in the presence of acidic task-specific ionic liquids as catalysts. We employed aliphatic and aromatic ionic liquids as catalysts, and choline chloride-based deep eutectic solvents bearing glycols or carboxylic acids, as solvents. The reactions were performed in a biphasic system, with acetone as a benign extracting solvent, enabling continuous extraction of 5-HMF. We aimed to find the best experimental conditions for this transformation, in terms of catalyst loading, solvent, reaction time and temperature to achieve an economical and energy efficient process. We also analyzed the results in terms of solvent viscosity and structural organization as well as catalysts acidity, to elucidate which structural features mostly favour the reaction. Under optimized conditions, we obtained a yield in 5-HMF of 71 %, at 80 °C in 3 h. Our system can be scaled up and recycled three times with no loss in yield. Finally, comparison with the literature shows that our system achieves a higher yield under milder conditions than most protocols so far reported for the same transformation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信