Shujie Wu, Shiwen Yang, Linlin Ou, Hongjian Zhang, Lu Wang, Bingyu Feng, Zeyu Bai, Weichang Li, Bin Cheng, Wei Seong Toh, Juan Xia
{"title":"Melatonin-Loaded Hydrogel Modulates Circadian Rhythms and Alleviates Oxidative Stress and Inflammation to Promote Wound Healing.","authors":"Shujie Wu, Shiwen Yang, Linlin Ou, Hongjian Zhang, Lu Wang, Bingyu Feng, Zeyu Bai, Weichang Li, Bin Cheng, Wei Seong Toh, Juan Xia","doi":"10.1021/acsabm.4c01752","DOIUrl":null,"url":null,"abstract":"<p><p>Circadian rhythm disruption, commonly caused by factors such as jet lag and shift work, is increasingly recognized as a critical factor impairing wound healing. Although melatonin is known to regulate circadian rhythms and has potential in wound repair, its clinical application is limited by low bioavailability. To address these challenges, we developed an alginate-based dual-network hydrogel as a delivery system for melatonin, ensuring its stable and sustained release at the wound site. This approach enhances the efficacy of melatonin in modulating the wound healing process. We investigated the effects of circadian rhythm disruption on the wound microenvironment under the influence of the melatonin-loaded hydrogel with a focus on its biocompatibility, hemostatic properties, and antioxidant response functions. Additionally, we elucidated the mechanisms by which the melatonin-loaded hydrogel system promotes wound healing. Our findings provide insights into the relationship between circadian rhythm disruption and wound healing, offering a promising strategy for the management of chronic wounds associated with circadian rhythm disorders.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Circadian rhythm disruption, commonly caused by factors such as jet lag and shift work, is increasingly recognized as a critical factor impairing wound healing. Although melatonin is known to regulate circadian rhythms and has potential in wound repair, its clinical application is limited by low bioavailability. To address these challenges, we developed an alginate-based dual-network hydrogel as a delivery system for melatonin, ensuring its stable and sustained release at the wound site. This approach enhances the efficacy of melatonin in modulating the wound healing process. We investigated the effects of circadian rhythm disruption on the wound microenvironment under the influence of the melatonin-loaded hydrogel with a focus on its biocompatibility, hemostatic properties, and antioxidant response functions. Additionally, we elucidated the mechanisms by which the melatonin-loaded hydrogel system promotes wound healing. Our findings provide insights into the relationship between circadian rhythm disruption and wound healing, offering a promising strategy for the management of chronic wounds associated with circadian rhythm disorders.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.