3D phase-field cohesive fracture: Unifying energy, driving force, and stress criteria for crack nucleation and propagation direction

IF 5 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ye Feng , Lu Hai
{"title":"3D phase-field cohesive fracture: Unifying energy, driving force, and stress criteria for crack nucleation and propagation direction","authors":"Ye Feng ,&nbsp;Lu Hai","doi":"10.1016/j.jmps.2025.106036","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a 3D variational phase-field cohesive fracture model that incorporates crack direction information into the energy functional. Through an analytical homogenization procedure, the crack normal is obtained in closed form based on the principle of energy minimization. We find that, within the proposed model, several widely recognized crack direction criteria—including the minimum potential energy, maximum driving force, and maximum cohesive stress—are consistent and unified. The remaining criteria are simply stress-space descriptions of the same physical state, derived from the strain-space minimum potential energy criterion through the Legendre transformation. The performance of the proposed model is demonstrated through four representative numerical examples involving tension, torsion, anti-plane shear, and mixed-mode loading. The results indicate that, as the proposed model faithfully converges to the 3D cohesive zone model with a mixed-mode cohesive law, it is capable of predicting complex 3D crack morphologies during nucleation and growth, and is general enough to describe both tensile- and shear-dominated 3D fractures.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"196 ","pages":"Article 106036"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509625000122","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a 3D variational phase-field cohesive fracture model that incorporates crack direction information into the energy functional. Through an analytical homogenization procedure, the crack normal is obtained in closed form based on the principle of energy minimization. We find that, within the proposed model, several widely recognized crack direction criteria—including the minimum potential energy, maximum driving force, and maximum cohesive stress—are consistent and unified. The remaining criteria are simply stress-space descriptions of the same physical state, derived from the strain-space minimum potential energy criterion through the Legendre transformation. The performance of the proposed model is demonstrated through four representative numerical examples involving tension, torsion, anti-plane shear, and mixed-mode loading. The results indicate that, as the proposed model faithfully converges to the 3D cohesive zone model with a mixed-mode cohesive law, it is capable of predicting complex 3D crack morphologies during nucleation and growth, and is general enough to describe both tensile- and shear-dominated 3D fractures.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of The Mechanics and Physics of Solids
Journal of The Mechanics and Physics of Solids 物理-材料科学:综合
CiteScore
9.80
自引率
9.40%
发文量
276
审稿时长
52 days
期刊介绍: The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics. The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics. The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信