{"title":"Water consumption turning point for Robinia pseudoacacia occurs at its middle stand age","authors":"Yali Zhao, Yunqiang Wang, Ruijie Li, Lijun Qi, Hui Sun, Pingping Zhang, Zimin Li","doi":"10.1007/s11104-025-07231-x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Aims</h3><p>Over recent decades, the Chinese government has instigated large-scale vegetation restoration projects across the Loess Plateau to control soil erosion. Yet, this project coupling effect with associative interannual variations and magnitudinous decreases during vegetation species’ developmental stages have rarely been explored. Therefore, we conducted experiments to explore the water budget characteristics under different stand ages of <i>Robinia pseudoacacia.</i></p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>We selected five <i>R. pseudoacacia</i> stand ages (i.e., 6 yr, 16 yr, 20 yr, 35 yr, and 45 yr) to investigate their individual interannual water budgets over four consecutive years (2019–2022).</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Compared with grassland, the significant soil water amounts were consumed within the deep soil layers (> 200 cm) of all <i>R. pseudoacacia</i> stand ages. The soil water storage (SWS) deficit gradually worsened between 6–20 yr but then improved between 35–45 yr. Also, SWS values of all five <i>R. pseudoacacia</i> stands significantly differed (<i>p</i> < 0.05). Interestingly, as the stands aged, the increasing rate of actual evapotranspiration (AET) largely decreased from 125 mm yr<sup>−1</sup> to 29 mm yr<sup>−1</sup>. The relationship between cumulative precipitation and AET further revealed that the water equilibrium input–output state reached at the stand’s middle age (~ 20 yr), after which the positive water input feedback occurred.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>These findings highlight that the water consumption process turning point for <i>R. pseudoacacia</i> occurs at the stand’s middle stage, indicating its role in SWS recovery. Our experimental evidence will benefit both researchers and policymakers, helping them to better regulate water resources and to optimize forest management alternatives.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"20 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-025-07231-x","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Aims
Over recent decades, the Chinese government has instigated large-scale vegetation restoration projects across the Loess Plateau to control soil erosion. Yet, this project coupling effect with associative interannual variations and magnitudinous decreases during vegetation species’ developmental stages have rarely been explored. Therefore, we conducted experiments to explore the water budget characteristics under different stand ages of Robinia pseudoacacia.
Methods
We selected five R. pseudoacacia stand ages (i.e., 6 yr, 16 yr, 20 yr, 35 yr, and 45 yr) to investigate their individual interannual water budgets over four consecutive years (2019–2022).
Results
Compared with grassland, the significant soil water amounts were consumed within the deep soil layers (> 200 cm) of all R. pseudoacacia stand ages. The soil water storage (SWS) deficit gradually worsened between 6–20 yr but then improved between 35–45 yr. Also, SWS values of all five R. pseudoacacia stands significantly differed (p < 0.05). Interestingly, as the stands aged, the increasing rate of actual evapotranspiration (AET) largely decreased from 125 mm yr−1 to 29 mm yr−1. The relationship between cumulative precipitation and AET further revealed that the water equilibrium input–output state reached at the stand’s middle age (~ 20 yr), after which the positive water input feedback occurred.
Conclusions
These findings highlight that the water consumption process turning point for R. pseudoacacia occurs at the stand’s middle stage, indicating its role in SWS recovery. Our experimental evidence will benefit both researchers and policymakers, helping them to better regulate water resources and to optimize forest management alternatives.
近几十年来,中国政府在黄土高原实施了大规模的植被恢复工程,以控制水土流失。然而,这种项目耦合效应与相关年际变化和植被物种发育阶段的大幅减少的研究很少。为此,我们对刺槐不同林龄下水分收支特征进行了试验研究。方法选取6年、16年、20年、35年和45年5个不同林龄的刺槐林分,连续4年(2019-2022年)调查其年际水分收支情况。结果与草地相比,各林龄刺槐深层(200 cm)土壤耗水量显著;土壤水分贮量在6 ~ 20年之间逐渐恶化,在35 ~ 45年之间逐渐改善,5个刺槐林分的土壤水分贮量差异显著(p < 0.05)。有趣的是,随着林分老化,实际蒸散发(AET)的增长率从125 mm yr - 1大幅下降至29 mm yr - 1。累积降水量与AET的关系进一步揭示了林分中期(~ 20年)水分投入产出达到平衡状态,之后出现正的水分投入反馈。结论刺槐耗水过程拐点出现在林分中期,表明刺槐耗水过程在林分SWS恢复中的作用。我们的实验证据将有利于研究人员和政策制定者,帮助他们更好地调节水资源和优化森林管理替代方案。
期刊介绍:
Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.