Multidimensional micro-nano heterostructures composed of nanofibers and micro dodecahedrons for electromagnetic wave attenuation and energy conversion

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhan-Zhan Wang, Qi Zheng, Mei-Jie Yu, Mao-Sheng Cao
{"title":"Multidimensional micro-nano heterostructures composed of nanofibers and micro dodecahedrons for electromagnetic wave attenuation and energy conversion","authors":"Zhan-Zhan Wang, Qi Zheng, Mei-Jie Yu, Mao-Sheng Cao","doi":"10.1016/j.jmst.2025.01.002","DOIUrl":null,"url":null,"abstract":"As electromagnetic (EM) pollution intensifies, EM protection materials have garnered significant attention. However, the development of lightweight and efficient EM protection materials still faces numerous challenges. In this work, a bilayered metal-organic framework (MOF), specifically zeolitic imidazolate framework-8@zeolitic imidazolate framework-67 (ZIF-8@ZIF-67), is initially prepared. Subsequently, through a combination of electrospinning and high-temperature carbonization processes, a heterodimensional structure featuring carbon-based dodecahedrons tandemly arranged on carbon nanofibers was obtained. The carbonization at various temperatures modulated the nanofibers’ conductive network and graphitization of dodecahedrons, thereby regulating the dielectric response, which is crucial for tuning the EM properties of the material. Furthermore, dielectric-magnetic synergy also plays a certain role in optimizing microwave absorption performance. The Co-CHD@CNF800 with 60 wt% loading content demonstrates a minimum reflection loss (RL) of −53.6 dB at 1.83 mm, while 40 wt% loading content exhibits a maximum effective absorption bandwidth (EAB) of 6 GHz at 2.67 mm. Additionally, Co-CHD@CNF1000 with 80 wt% exhibits remarkable electromagnetic interference (EMI) shielding performance. Importantly, an EM energy conversion device has been constructed that can effectively recover and utilize harmful EM energy. This research presents an innovative approach to the development of lightweight and efficient EM protection materials and devices.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"14 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2025.01.002","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

As electromagnetic (EM) pollution intensifies, EM protection materials have garnered significant attention. However, the development of lightweight and efficient EM protection materials still faces numerous challenges. In this work, a bilayered metal-organic framework (MOF), specifically zeolitic imidazolate framework-8@zeolitic imidazolate framework-67 (ZIF-8@ZIF-67), is initially prepared. Subsequently, through a combination of electrospinning and high-temperature carbonization processes, a heterodimensional structure featuring carbon-based dodecahedrons tandemly arranged on carbon nanofibers was obtained. The carbonization at various temperatures modulated the nanofibers’ conductive network and graphitization of dodecahedrons, thereby regulating the dielectric response, which is crucial for tuning the EM properties of the material. Furthermore, dielectric-magnetic synergy also plays a certain role in optimizing microwave absorption performance. The Co-CHD@CNF800 with 60 wt% loading content demonstrates a minimum reflection loss (RL) of −53.6 dB at 1.83 mm, while 40 wt% loading content exhibits a maximum effective absorption bandwidth (EAB) of 6 GHz at 2.67 mm. Additionally, Co-CHD@CNF1000 with 80 wt% exhibits remarkable electromagnetic interference (EMI) shielding performance. Importantly, an EM energy conversion device has been constructed that can effectively recover and utilize harmful EM energy. This research presents an innovative approach to the development of lightweight and efficient EM protection materials and devices.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信