{"title":"Endoplasmic Reticulum-Targeted Polymer-Manganese Nanocomplexes for Tumor Immunotherapy","authors":"Haoru Zhu, Chang Xu, Yu Geng, Youqing Shen, Nasha Qiu","doi":"10.1021/acsnano.4c17279","DOIUrl":null,"url":null,"abstract":"Manganese ions (Mn<sup>2+</sup>) are an immune activator that enhances the activation of both cGAS and STING proteins. The STING signaling activation and subsequential immune responses are predominantly associated with endoplasmic reticulum (ER). Therefore, ER targeting of Mn<sup>2+</sup> in the subcellular compartments would promote the activation of STING signaling pathways. Herein, we report the design of ER-targeted manganese-based nanocomplexes (NCs) by complexation of Mn<sup>2+</sup> with a zwitterionic polymer, poly[2-(<i>N</i>-oxide-<i>N,N</i>-dimethylamino) ethyl methacrylate] (OPDMA). The Mn/OPDMA nanocomplexes (Mn/OPDMA NCs) keep a long blood circulation for tumor accumulation and trigger adsorption-mediated transcytosis for extravasation and deep tumor penetration. Notably, in the tumor-associated macrophages, the Mn/OPDMA NCs can preferentially translocate to their ERs, significantly enhancing cGAS-STING pathway activation for tumor-associated macrophage polarization and IFN-β secretion. In mouse colon and hepatocellular cancer models, the intravenously administrated Mn/OPDMA NCs efficiently remodel tumor immune microenvironment, greatly retard tumor growths by 2.4- to 5-fold, and prolong the mouse survivals compared to free Mn<sup>2+</sup>-treated mice. This study provides the ER-targeted delivery of Mn<sup>2+</sup> that achieves robust STING activation and, thus, potent systemic tumor inhibition without the toxicity of free Mn<sup>2+</sup>.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"25 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c17279","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Manganese ions (Mn2+) are an immune activator that enhances the activation of both cGAS and STING proteins. The STING signaling activation and subsequential immune responses are predominantly associated with endoplasmic reticulum (ER). Therefore, ER targeting of Mn2+ in the subcellular compartments would promote the activation of STING signaling pathways. Herein, we report the design of ER-targeted manganese-based nanocomplexes (NCs) by complexation of Mn2+ with a zwitterionic polymer, poly[2-(N-oxide-N,N-dimethylamino) ethyl methacrylate] (OPDMA). The Mn/OPDMA nanocomplexes (Mn/OPDMA NCs) keep a long blood circulation for tumor accumulation and trigger adsorption-mediated transcytosis for extravasation and deep tumor penetration. Notably, in the tumor-associated macrophages, the Mn/OPDMA NCs can preferentially translocate to their ERs, significantly enhancing cGAS-STING pathway activation for tumor-associated macrophage polarization and IFN-β secretion. In mouse colon and hepatocellular cancer models, the intravenously administrated Mn/OPDMA NCs efficiently remodel tumor immune microenvironment, greatly retard tumor growths by 2.4- to 5-fold, and prolong the mouse survivals compared to free Mn2+-treated mice. This study provides the ER-targeted delivery of Mn2+ that achieves robust STING activation and, thus, potent systemic tumor inhibition without the toxicity of free Mn2+.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.