{"title":"Low-Cost Preparation of Wafer-Scale Au(111) Single Crystals for the Epitaxy of Two-Dimensional Layered Materials","authors":"Jingyi Hu, Jialong Wang, Pengfei Yang, Wenzhi Quan, Xuan Wang, Haoxuan Ding, Jiatian Fu, You Peng, Ronghua Zhang, Honggang Wang, Liming Xie, Ke He, Lili Wang, Wei Wei, Leining Zhang, Zhongfan Liu, Yanfeng Zhang","doi":"10.1021/acsnano.4c17431","DOIUrl":null,"url":null,"abstract":"Single-crystal Au(111), renowned for its chemically inert surface, long-range “herringbone” reconstruction, and high electrical conductivity, has long served as an exemplary template in diverse fields, <i>e.g.</i>, crystal epitaxy, electronics, and electrocatalysis. However, commercial Au(111) products are high-priced and limited to centimeter sizes, largely restricting their broad applications. Herein, a low-cost, high-reproducible method is developed to produce 4 in. Au(111) single crystals from commercial Au foils, <i>via</i> an abnormal grain growth process. This methodology involves the initial preparation of a (100)-textured Au polycrystalline foil, followed by the evolution and continuous expansion of an Au(111) abnormal grain through one-site stress loading and stress-relief annealing in an Ar/H<sub>2</sub> atmosphere. Theoretical simulations indicate that stress/strain and high-temperature treatments in the H<sub>2</sub> atmosphere induce an intermediate disordered state, facilitating the evolution from polycrystalline Au(100) foil to single-crystal Au(111) foil. Furthermore, the resulting Au(111) foils have been utilized as model substrates for the oriented growth of two-dimensional transition metal dichalcogenides and their heterostructures with graphene. This work hereby puts forward an effective approach for large-scale, cost-effective production of metal single crystals, potentially revolutionizing their applications across various fields, from materials sciences to electronics and catalysis.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"139 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c17431","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Single-crystal Au(111), renowned for its chemically inert surface, long-range “herringbone” reconstruction, and high electrical conductivity, has long served as an exemplary template in diverse fields, e.g., crystal epitaxy, electronics, and electrocatalysis. However, commercial Au(111) products are high-priced and limited to centimeter sizes, largely restricting their broad applications. Herein, a low-cost, high-reproducible method is developed to produce 4 in. Au(111) single crystals from commercial Au foils, via an abnormal grain growth process. This methodology involves the initial preparation of a (100)-textured Au polycrystalline foil, followed by the evolution and continuous expansion of an Au(111) abnormal grain through one-site stress loading and stress-relief annealing in an Ar/H2 atmosphere. Theoretical simulations indicate that stress/strain and high-temperature treatments in the H2 atmosphere induce an intermediate disordered state, facilitating the evolution from polycrystalline Au(100) foil to single-crystal Au(111) foil. Furthermore, the resulting Au(111) foils have been utilized as model substrates for the oriented growth of two-dimensional transition metal dichalcogenides and their heterostructures with graphene. This work hereby puts forward an effective approach for large-scale, cost-effective production of metal single crystals, potentially revolutionizing their applications across various fields, from materials sciences to electronics and catalysis.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.