Tailoring Nanomaterials towards Global One Health: A Promising Nano-strategy against Antibiotic Resistance

IF 5.8 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Feiran Chen, Shuhan Zhang, Xi Wang, Zhenyu Wang
{"title":"Tailoring Nanomaterials towards Global One Health: A Promising Nano-strategy against Antibiotic Resistance","authors":"Feiran Chen, Shuhan Zhang, Xi Wang, Zhenyu Wang","doi":"10.1039/d4en00854e","DOIUrl":null,"url":null,"abstract":"The management of antibiotic resistance gene (ARG) contamination in the soil-plant system is a critical area of research with significant implications for public health and environmental sustainability. Recently, engineered nanomaterials (ENMs) have been developed to enhance plant growth and address the global food crisis. Studies on the effects of nanomaterials mostly indicate an increase in the spread of antibiotic resistance, while emerging findings reveal the potential of ENMs in mitigating ARG pollution. Unlike existing mechanisms such as adsorption, DNA damage, and microbial disinfection involved in ARG removal, ENMs are specifically modified (e.g., with particular chemical compositions or surface charge adjustment) to inhibit the transfer of ARGs and migration of antibiotic-resistant bacteria. The integration of ENMs with advanced technologies (e.g., CRISPR gene editing) holds great promise for remediating antibiotic resistance in soil-plant systems. Here, we provide an overview of ENM-ARG interactions and propose applications of tailored ENMs to inhibit ARG dissemination during the development of nano-enabled agriculture, addressing major challenges and directions for optimizing efficacy and safety of ENMs-based strategies for mitigating ARG contamination in agriculture.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"35 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d4en00854e","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The management of antibiotic resistance gene (ARG) contamination in the soil-plant system is a critical area of research with significant implications for public health and environmental sustainability. Recently, engineered nanomaterials (ENMs) have been developed to enhance plant growth and address the global food crisis. Studies on the effects of nanomaterials mostly indicate an increase in the spread of antibiotic resistance, while emerging findings reveal the potential of ENMs in mitigating ARG pollution. Unlike existing mechanisms such as adsorption, DNA damage, and microbial disinfection involved in ARG removal, ENMs are specifically modified (e.g., with particular chemical compositions or surface charge adjustment) to inhibit the transfer of ARGs and migration of antibiotic-resistant bacteria. The integration of ENMs with advanced technologies (e.g., CRISPR gene editing) holds great promise for remediating antibiotic resistance in soil-plant systems. Here, we provide an overview of ENM-ARG interactions and propose applications of tailored ENMs to inhibit ARG dissemination during the development of nano-enabled agriculture, addressing major challenges and directions for optimizing efficacy and safety of ENMs-based strategies for mitigating ARG contamination in agriculture.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Science: Nano
Environmental Science: Nano CHEMISTRY, MULTIDISCIPLINARY-ENVIRONMENTAL SCIENCES
CiteScore
12.20
自引率
5.50%
发文量
290
审稿时长
2.1 months
期刊介绍: Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas: Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability Nanomaterial interactions with biological systems and nanotoxicology Environmental fate, reactivity, and transformations of nanoscale materials Nanoscale processes in the environment Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信