Review of advancement in aggregation-induced emission-based fluorescent biosensors for enzyme detection: Mechanisms and biomedical applications

IF 5.7 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Huihui Sun , Jiake Wen , Shujing Chen , Yuli Han , Omachi Daniel Ogaji , Abdulmumin Muhammad Biu , Huan Cui , Xue Meng , Jin Li , Kunze Du , Yanxu Chang
{"title":"Review of advancement in aggregation-induced emission-based fluorescent biosensors for enzyme detection: Mechanisms and biomedical applications","authors":"Huihui Sun ,&nbsp;Jiake Wen ,&nbsp;Shujing Chen ,&nbsp;Yuli Han ,&nbsp;Omachi Daniel Ogaji ,&nbsp;Abdulmumin Muhammad Biu ,&nbsp;Huan Cui ,&nbsp;Xue Meng ,&nbsp;Jin Li ,&nbsp;Kunze Du ,&nbsp;Yanxu Chang","doi":"10.1016/j.aca.2025.343716","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Enzymes, primarily proteins produced by living organisms, exhibit high substrate selectivity and catalytic efficiency. Many are crucial for normal biological processes and are closely associated with the onset of various diseases. As such, developing methods for detecting disease-related enzymes is essential. Biosensors based on aggregation-induced emission (AIE) have gained significant attention due to their outstanding properties, including excellent photostability, high luminescence efficiency in the aggregated state, large Stokes shift, and favorable biocompatibility. This has led researchers to design a variety of fluorogens with AIE characteristics (AIEgens).</div></div><div><h3>Results</h3><div>This review provides an overview of the luminescence mechanism behind AIE and the key properties of AIEgens. It focuses on the physiological roles of disease-related enzymes and outlines various AIE-based fluorescent biosensors developed for enzyme recognition and detection. These biosensors are categorized according to their mechanisms, including hydrolysis, electrostatic adsorption, biological redox reactions, and pH-response. Additionally, this review explores the application of enzymes in disease progression, highlighting their value in inhibitor screening, traditional Chinese medicine research, sensing, bioimaging, and disease diagnosis and therapy. It also discusses the current limitations of AIEgens and explores emerging opportunities for their application.</div></div><div><h3>Significance and novelty</h3><div>Enzyme activity and levels are closely linked to the development of specific diseases, underscoring the importance of advancing methods for enzyme detection in disease diagnosis and treatment. This review provides valuable insights for the development of innovative AIEgens for enzyme detection, expands the options for detection mechanisms, and offers a theoretical foundation for clinical diagnostics and therapeutic applications.</div></div>","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"1346 ","pages":"Article 343716"},"PeriodicalIF":5.7000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003267025001102","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Enzymes, primarily proteins produced by living organisms, exhibit high substrate selectivity and catalytic efficiency. Many are crucial for normal biological processes and are closely associated with the onset of various diseases. As such, developing methods for detecting disease-related enzymes is essential. Biosensors based on aggregation-induced emission (AIE) have gained significant attention due to their outstanding properties, including excellent photostability, high luminescence efficiency in the aggregated state, large Stokes shift, and favorable biocompatibility. This has led researchers to design a variety of fluorogens with AIE characteristics (AIEgens).

Results

This review provides an overview of the luminescence mechanism behind AIE and the key properties of AIEgens. It focuses on the physiological roles of disease-related enzymes and outlines various AIE-based fluorescent biosensors developed for enzyme recognition and detection. These biosensors are categorized according to their mechanisms, including hydrolysis, electrostatic adsorption, biological redox reactions, and pH-response. Additionally, this review explores the application of enzymes in disease progression, highlighting their value in inhibitor screening, traditional Chinese medicine research, sensing, bioimaging, and disease diagnosis and therapy. It also discusses the current limitations of AIEgens and explores emerging opportunities for their application.

Significance and novelty

Enzyme activity and levels are closely linked to the development of specific diseases, underscoring the importance of advancing methods for enzyme detection in disease diagnosis and treatment. This review provides valuable insights for the development of innovative AIEgens for enzyme detection, expands the options for detection mechanisms, and offers a theoretical foundation for clinical diagnostics and therapeutic applications.

Abstract Image

Abstract Image

基于聚集诱导发射的酶检测荧光生物传感器进展综述:机制和生物医学应用
酶,主要是由生物体产生的蛋白质,具有很高的底物选择性和催化效率。许多对正常的生物过程至关重要,并与各种疾病的发病密切相关。因此,开发检测疾病相关酶的方法至关重要。基于聚集诱导发射(AIE)的生物传感器因其优异的光稳定性、聚集态高发光效率、Stokes位移大、良好的生物相容性等特性而受到广泛关注。这导致研究人员设计了各种具有AIE特性的氟化物(AIEgens)。结果综述了AIE的发光机理及AIE的主要特性。它侧重于疾病相关酶的生理作用,并概述了用于酶识别和检测的各种基于ai的荧光生物传感器。这些生物传感器根据其作用机制进行分类,包括水解、静电吸附、生物氧化还原反应和ph响应。此外,本文还探讨了酶在疾病进展中的应用,强调了酶在抑制剂筛选、中药研究、传感、生物成像以及疾病诊断和治疗方面的价值。它还讨论了AIEgens目前的局限性,并探讨了其应用的新机会。酶的活性和水平与特定疾病的发展密切相关,强调了推进酶检测方法在疾病诊断和治疗中的重要性。本综述为酶检测的创新aigens的开发提供了有价值的见解,扩展了检测机制的选择,并为临床诊断和治疗应用提供了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytica Chimica Acta
Analytica Chimica Acta 化学-分析化学
CiteScore
10.40
自引率
6.50%
发文量
1081
审稿时长
38 days
期刊介绍: Analytica Chimica Acta has an open access mirror journal Analytica Chimica Acta: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Analytica Chimica Acta provides a forum for the rapid publication of original research, and critical, comprehensive reviews dealing with all aspects of fundamental and applied modern analytical chemistry. The journal welcomes the submission of research papers which report studies concerning the development of new and significant analytical methodologies. In determining the suitability of submitted articles for publication, particular scrutiny will be placed on the degree of novelty and impact of the research and the extent to which it adds to the existing body of knowledge in analytical chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信