{"title":"Diffusive topology preserving manifold distances for single-cell data analysis","authors":"Jiangyong Wei, Bin Zhang, Qiu Wang, Tianshou Zhou, Tianhai Tian, Luonan Chen","doi":"10.1073/pnas.2404860121","DOIUrl":null,"url":null,"abstract":"Manifold learning techniques have emerged as crucial tools for uncovering latent patterns in high-dimensional single-cell data. However, most existing dimensionality reduction methods primarily rely on 2D visualization, which can distort true data relationships and fail to extract reliable biological information. Here, we present DTNE (diffusive topology neighbor embedding), a dimensionality reduction framework that faithfully approximates manifold distance to enhance cellular relationships and dynamics. DTNE constructs a manifold distance matrix using a modified personalized PageRank algorithm, thereby preserving topological structure while enabling diverse single-cell analyses. This approach facilitates distribution-based cellular relationship analysis, pseudotime inference, and clustering within a unified framework. Extensive benchmarking against mainstream algorithms on diverse datasets demonstrates DTNE’s superior performance in maintaining geodesic distances and revealing significant biological patterns. Our results establish DTNE as a powerful tool for high-dimensional data analysis in uncovering meaningful biological insights.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"15 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2404860121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Manifold learning techniques have emerged as crucial tools for uncovering latent patterns in high-dimensional single-cell data. However, most existing dimensionality reduction methods primarily rely on 2D visualization, which can distort true data relationships and fail to extract reliable biological information. Here, we present DTNE (diffusive topology neighbor embedding), a dimensionality reduction framework that faithfully approximates manifold distance to enhance cellular relationships and dynamics. DTNE constructs a manifold distance matrix using a modified personalized PageRank algorithm, thereby preserving topological structure while enabling diverse single-cell analyses. This approach facilitates distribution-based cellular relationship analysis, pseudotime inference, and clustering within a unified framework. Extensive benchmarking against mainstream algorithms on diverse datasets demonstrates DTNE’s superior performance in maintaining geodesic distances and revealing significant biological patterns. Our results establish DTNE as a powerful tool for high-dimensional data analysis in uncovering meaningful biological insights.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.