Nikolaos Kaloterakis, Adriana Giongo, Andrea Braun-Kiewnick, Mehdi Rashtbari, Priscilla Zamberlan, Bahar S. Razavi, Kornelia Smalla, Rüdiger Reichel, Nicolas Brüggemann
{"title":"Rotational diversity shapes the bacterial and archaeal communities and confers positive plant-soil feedback in winter wheat rotations","authors":"Nikolaos Kaloterakis, Adriana Giongo, Andrea Braun-Kiewnick, Mehdi Rashtbari, Priscilla Zamberlan, Bahar S. Razavi, Kornelia Smalla, Rüdiger Reichel, Nicolas Brüggemann","doi":"10.1016/j.soilbio.2025.109729","DOIUrl":null,"url":null,"abstract":"Plant-soil feedbacks drive productivity in winter wheat (WW; <em>Triticum aestivum</em> L.) rotations. Although this is a frequent observation, the underlying plant-soil-microbe interactions remain unclear. We aimed to investigate the effects of WW rotational positions on soil bacterial and archaeal communities, as well as nitrogen (N) cycling, as potential drivers of WW yield decline in successively-grown WW. WW following oilseed rape (W1; <em>Brassica napus</em> L.) was compared with WW in self-succession (W2) in a rhizotron study using agricultural soil with a sandy loam texture. Samples were collected at tillering and grain ripening. At tillering, we found a higher NO<sub>3</sub><sup>-</sup> content in W1 soil, especially in the 60-100 cm subsoil layer, associated with the N-rich residues of the preceding oilseed rape crop, while this trend was reversed at grain ripening. Analysis of enzyme kinetics revealed an increase in leucine aminopeptidase activity in W1 and an increase in β-glucosidase activity in W2 at tillering, possibly related to the residue quality of the preceding crop. No differences in bacterial and archaeal alpha diversity were observed at both sampling times, but beta diversity showed a significant role of both rotational position and soil depth in shaping the microbial community. The gene copy numbers of <em>amoA</em> genes of ammonia-oxidizing bacteria (AOB), <em>nifH</em> and <em>nirS</em> were significantly higher in W2 compared to W1 at tillering, suggesting a strong effect of rotational position on N cycling of the following WW. The abundances of <em>amoA</em> (AOB) and <em>nirS</em> were also higher in W2 at grain ripening<em>.</em> Our results highlight the persistent soil legacy of the preceding crop on both nutrient cycling and bacterial and archaeal community composition, contributing to yield reduction in successively grown WW. Understanding plant-microbe interactions and keeping them at the center of productive WW rotations is, and will continue to be, critical to future agriculture.","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"36 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Biology & Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.soilbio.2025.109729","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Plant-soil feedbacks drive productivity in winter wheat (WW; Triticum aestivum L.) rotations. Although this is a frequent observation, the underlying plant-soil-microbe interactions remain unclear. We aimed to investigate the effects of WW rotational positions on soil bacterial and archaeal communities, as well as nitrogen (N) cycling, as potential drivers of WW yield decline in successively-grown WW. WW following oilseed rape (W1; Brassica napus L.) was compared with WW in self-succession (W2) in a rhizotron study using agricultural soil with a sandy loam texture. Samples were collected at tillering and grain ripening. At tillering, we found a higher NO3- content in W1 soil, especially in the 60-100 cm subsoil layer, associated with the N-rich residues of the preceding oilseed rape crop, while this trend was reversed at grain ripening. Analysis of enzyme kinetics revealed an increase in leucine aminopeptidase activity in W1 and an increase in β-glucosidase activity in W2 at tillering, possibly related to the residue quality of the preceding crop. No differences in bacterial and archaeal alpha diversity were observed at both sampling times, but beta diversity showed a significant role of both rotational position and soil depth in shaping the microbial community. The gene copy numbers of amoA genes of ammonia-oxidizing bacteria (AOB), nifH and nirS were significantly higher in W2 compared to W1 at tillering, suggesting a strong effect of rotational position on N cycling of the following WW. The abundances of amoA (AOB) and nirS were also higher in W2 at grain ripening. Our results highlight the persistent soil legacy of the preceding crop on both nutrient cycling and bacterial and archaeal community composition, contributing to yield reduction in successively grown WW. Understanding plant-microbe interactions and keeping them at the center of productive WW rotations is, and will continue to be, critical to future agriculture.
期刊介绍:
Soil Biology & Biochemistry publishes original research articles of international significance focusing on biological processes in soil and their applications to soil and environmental quality. Major topics include the ecology and biochemical processes of soil organisms, their effects on the environment, and interactions with plants. The journal also welcomes state-of-the-art reviews and discussions on contemporary research in soil biology and biochemistry.