Supramolecular discrimination and diagnosis-guided treatment of intracellular bacteria

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jia-Hong Tian, Siyuan Huang, Ze-Han Wang, Juan-Juan Li, Xianhui Song, Ze-Tao Jiang, Bing-Sen Shi, Ying-Ying Zhao, Hui-Yan Zhang, Ke-Rang Wang, Xin-Yue Hu, Xinge Zhang, Dong-Sheng Guo
{"title":"Supramolecular discrimination and diagnosis-guided treatment of intracellular bacteria","authors":"Jia-Hong Tian, Siyuan Huang, Ze-Han Wang, Juan-Juan Li, Xianhui Song, Ze-Tao Jiang, Bing-Sen Shi, Ying-Ying Zhao, Hui-Yan Zhang, Ke-Rang Wang, Xin-Yue Hu, Xinge Zhang, Dong-Sheng Guo","doi":"10.1038/s41467-025-56308-9","DOIUrl":null,"url":null,"abstract":"<p>Pathogenic intracellular bacteria pose a significant threat to global public health due to the barriers presented by host cells hindering the timely detection of hidden bacteria and the effective delivery of therapeutic agents. To address these challenges, we propose a tandem diagnosis-guided treatment paradigm. A supramolecular sensor array is developed for simple, rapid, accurate, and high-throughput identification of intracellular bacteria. This diagnostic approach executes the significant guiding missions of screening a customized host-guest drug delivery system by disclosing the rationale behind the discrimination. We design eight azocalix[4]arenes with differential active targeting, cellular internalization, and hypoxia responsiveness to penetrate cells and interact with bacteria. Loaded with fluorescent indicators, these azocalix[4]arenes form a sensor array capable of discriminating eight intracellular bacterial species without cell lysis or separation. By fingerprinting specimens collected from bacteria-infected mice, the facilitated accurate diagnosis offers valuable guidance for selecting appropriate antibiotics. Moreover, mannose-modified azocalix[4]arene (ManAC4A) is screened as a drug carrier efficiently taken up by macrophages. Doxycycline loaded with ManAC4A exhibits improved efficacy against methicillin-resistant <i>Staphylococcus aureus</i>-infected peritonitis. This study introduces an emerging paradigm to intracellular bacterial diagnosis and treatment, offering broad potential in combating bacterial infectious diseases.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"29 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56308-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Pathogenic intracellular bacteria pose a significant threat to global public health due to the barriers presented by host cells hindering the timely detection of hidden bacteria and the effective delivery of therapeutic agents. To address these challenges, we propose a tandem diagnosis-guided treatment paradigm. A supramolecular sensor array is developed for simple, rapid, accurate, and high-throughput identification of intracellular bacteria. This diagnostic approach executes the significant guiding missions of screening a customized host-guest drug delivery system by disclosing the rationale behind the discrimination. We design eight azocalix[4]arenes with differential active targeting, cellular internalization, and hypoxia responsiveness to penetrate cells and interact with bacteria. Loaded with fluorescent indicators, these azocalix[4]arenes form a sensor array capable of discriminating eight intracellular bacterial species without cell lysis or separation. By fingerprinting specimens collected from bacteria-infected mice, the facilitated accurate diagnosis offers valuable guidance for selecting appropriate antibiotics. Moreover, mannose-modified azocalix[4]arene (ManAC4A) is screened as a drug carrier efficiently taken up by macrophages. Doxycycline loaded with ManAC4A exhibits improved efficacy against methicillin-resistant Staphylococcus aureus-infected peritonitis. This study introduces an emerging paradigm to intracellular bacterial diagnosis and treatment, offering broad potential in combating bacterial infectious diseases.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信