Deep Learning-Based Surrogate-Assisted Intelligent Optimization Framework for Reservoir Production Schemes

IF 4.8 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Lian Wang, Hehua Wang, Liehui Zhang, Liang Zhang, Rui Deng, Bing Xu, Xing Zhao, Chunxiang Zhou, Li Fan, Xindong Lv, Junda Wu
{"title":"Deep Learning-Based Surrogate-Assisted Intelligent Optimization Framework for Reservoir Production Schemes","authors":"Lian Wang, Hehua Wang, Liehui Zhang, Liang Zhang, Rui Deng, Bing Xu, Xing Zhao, Chunxiang Zhou, Li Fan, Xindong Lv, Junda Wu","doi":"10.1007/s11053-025-10458-1","DOIUrl":null,"url":null,"abstract":"<p>Determination of reservoir production schemes has always been a difficult problem during the close-loop management of waterflooding reservoir. Different well control results in significant influence on production, water breakthrough time and recovery rate of producing wells, especially in heterogeneous reservoirs. To optimize well controls, a new method using transpose convolution neural network (TCNN) surrogate model and adaptive differential evolution with optional external archive (JADE) algorithm was introduced. In this method, the TCNN surrogate model, which uses image processing, took well controls (i.e., bottom hole pressure and injection rate) and production time as parameters to predict oil saturation and pressure distribution fields at different time periods. It could well replace a numerical simulator, accurately predict the regional production dynamics at different production time steps, and significantly reduce the simulation time during the optimization process. Meanwhile, the JADE algorithm, as an improved differential evolution algorithm, greatly improved the convergence rate while ensuring the search breadth and it was suitable for solving multi-parameter well control optimization problems. Using a comprehensive reservoir optimization problem as an example, the selection and setting of some parameters during the TCNN training and JADE optimization are discussed. Finally, the method was applied to a real 3D reservoir. The computational speed of the TCNN model was about 3600 times and 2300 times faster than that of a numerical simulation model for the synthetic reservoir and L43 block, respectively.</p>","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"34 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11053-025-10458-1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Determination of reservoir production schemes has always been a difficult problem during the close-loop management of waterflooding reservoir. Different well control results in significant influence on production, water breakthrough time and recovery rate of producing wells, especially in heterogeneous reservoirs. To optimize well controls, a new method using transpose convolution neural network (TCNN) surrogate model and adaptive differential evolution with optional external archive (JADE) algorithm was introduced. In this method, the TCNN surrogate model, which uses image processing, took well controls (i.e., bottom hole pressure and injection rate) and production time as parameters to predict oil saturation and pressure distribution fields at different time periods. It could well replace a numerical simulator, accurately predict the regional production dynamics at different production time steps, and significantly reduce the simulation time during the optimization process. Meanwhile, the JADE algorithm, as an improved differential evolution algorithm, greatly improved the convergence rate while ensuring the search breadth and it was suitable for solving multi-parameter well control optimization problems. Using a comprehensive reservoir optimization problem as an example, the selection and setting of some parameters during the TCNN training and JADE optimization are discussed. Finally, the method was applied to a real 3D reservoir. The computational speed of the TCNN model was about 3600 times and 2300 times faster than that of a numerical simulation model for the synthetic reservoir and L43 block, respectively.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Natural Resources Research
Natural Resources Research Environmental Science-General Environmental Science
CiteScore
11.90
自引率
11.10%
发文量
151
期刊介绍: This journal publishes quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Typical articles use geoscientific data or analyses to assess, test, or compare resource-related aspects. NRR covers a wide variety of resources including minerals, coal, hydrocarbon, geothermal, water, and vegetation. Case studies are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信