Qiuting Chen, Jie Teng, Cuixiao Zhu, Jinzhi Du, Guixiang Wang and Jie Wu
{"title":"Flexible deformation and special interface structure in nanoparticle-stabilized Pickering bubbles strengthen the immunological response as adjuvant†","authors":"Qiuting Chen, Jie Teng, Cuixiao Zhu, Jinzhi Du, Guixiang Wang and Jie Wu","doi":"10.1039/D4TB01763C","DOIUrl":null,"url":null,"abstract":"<p >Adjuvants can enhance an immunological response, which is an important part of vaccine research. Pickering bubbles have been a mega-hit for biomedical applications, including <em>in vivo</em> visualization and targeted drug delivery. However, there have been no studies on Pickering bubbles as an immunological adjuvant, and the special properties and structures of Pickering bubbles may play an important role in immunization. In this study, poly(lactic-<em>co</em>-glycolic acid) (PLGA) particles were used to construct nanoparticle-stabilized Pickering bubbles (PPBs). PPBs were evaluated as immunological adjuvants based on immune response effects and mechanisms and aiming at future applications. PPBs have a flexible gas core and a special surface structure that can increase the cell contact area to promote phagocytosis and enhance the immune response. Quartz crystal microbalance with dissipation (QCM-D) data showed the flexibility of PPBs, and confocal images captured the deformability of PPBs during cell uptake. Flow cytometry and antibody titer detection showed that PPBs significantly promoted antigen uptake and activation of bone-marrow-derived dendritic cells (BMDCs) and induced an immune response with upregulated SIINFEKL MHC I and CD127 molecules on the surface of CD8<small><sup>+</sup></small> T cells, indicating excellent antigen cross-presentation and cellular immune triggering effects. The upregulation of CD44 and CD62L on CD4<small><sup>+</sup></small> T cells and the IgG2a/IgG1 ratio bias further demonstrated the excellent adjuvant role of PPBs in immunity. Finally, the biosafety of PPBs as an immunological adjuvant was also demonstrated. Our study demonstrates the potential of particle-stabilized bubbles as immune adjuvants, which provides innovative ideas for vaccine development and design.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 8","pages":" 2725-2736"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb01763c","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Adjuvants can enhance an immunological response, which is an important part of vaccine research. Pickering bubbles have been a mega-hit for biomedical applications, including in vivo visualization and targeted drug delivery. However, there have been no studies on Pickering bubbles as an immunological adjuvant, and the special properties and structures of Pickering bubbles may play an important role in immunization. In this study, poly(lactic-co-glycolic acid) (PLGA) particles were used to construct nanoparticle-stabilized Pickering bubbles (PPBs). PPBs were evaluated as immunological adjuvants based on immune response effects and mechanisms and aiming at future applications. PPBs have a flexible gas core and a special surface structure that can increase the cell contact area to promote phagocytosis and enhance the immune response. Quartz crystal microbalance with dissipation (QCM-D) data showed the flexibility of PPBs, and confocal images captured the deformability of PPBs during cell uptake. Flow cytometry and antibody titer detection showed that PPBs significantly promoted antigen uptake and activation of bone-marrow-derived dendritic cells (BMDCs) and induced an immune response with upregulated SIINFEKL MHC I and CD127 molecules on the surface of CD8+ T cells, indicating excellent antigen cross-presentation and cellular immune triggering effects. The upregulation of CD44 and CD62L on CD4+ T cells and the IgG2a/IgG1 ratio bias further demonstrated the excellent adjuvant role of PPBs in immunity. Finally, the biosafety of PPBs as an immunological adjuvant was also demonstrated. Our study demonstrates the potential of particle-stabilized bubbles as immune adjuvants, which provides innovative ideas for vaccine development and design.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices