Evaluating genome-wide and targeted forensic sequencing approaches to kinship determination

IF 3.2 2区 医学 Q2 GENETICS & HEREDITY
Margherita Colucci , Jon H. Wetton , Burkhard Rolf , Nuala Sheehan , Mark A. Jobling
{"title":"Evaluating genome-wide and targeted forensic sequencing approaches to kinship determination","authors":"Margherita Colucci ,&nbsp;Jon H. Wetton ,&nbsp;Burkhard Rolf ,&nbsp;Nuala Sheehan ,&nbsp;Mark A. Jobling","doi":"10.1016/j.fsigen.2025.103228","DOIUrl":null,"url":null,"abstract":"<div><div>Kinship determination is a valuable tool in forensic genetics, with applications including familial searching, disaster victim identification, and investigative genetic genealogy. Conventional typing of small numbers of autosomal short tandem repeats (STRs) confidently identifies only first-degree relatives. Massively parallel sequencing (MPS) can access more STRs and resolve alleles identical by length but differing in sequence (isoalleles), which may increase the power of kinship estimation, particularly when combined with additional sequenced single nucleotide polymorphism (SNP) loci, as in the ForenSeq DNA Signature Prep kit. MPS sequencing of ∼10,000 SNPs is available in the ForenSeq Kintelligence kit, promising detection of more distant kin, while SNP chips carrying hundreds of thousands of markers increase resolution still further. Here we evaluate these different resolutions in a set of pedigrees, and via simulations. As expected, the key factor influencing the precision of kinship estimation is the number of markers analysed and MPS-based analysis of STRs increases resolution, with the full set of ForenSeq DNA Signature Prep kit markers allowing detection of third-degree relatives. Since SNP chips include non-autosomal (X- and Y-chromosomal, and mitochondrial [mtDNA]) markers, we ask how these perform within the pedigrees, cross-referencing to Y-STR sequence data. We highlight the importance of understanding haplogroup resolutions in the increasingly complex Y and mtDNA phylogenies, to avoid false exclusions. Incorporation of X-SNPs allows tracing of X-chromosome segments within families. These different approaches can add value to kinship estimation, but some require simpler bioinformatic interfaces to make them more widely accessible in practice, and also access to appropriate allele frequency data to avoid problems associated with ancestry mis-specification.</div></div>","PeriodicalId":50435,"journal":{"name":"Forensic Science International-Genetics","volume":"76 ","pages":"Article 103228"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Genetics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872497325000080","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Kinship determination is a valuable tool in forensic genetics, with applications including familial searching, disaster victim identification, and investigative genetic genealogy. Conventional typing of small numbers of autosomal short tandem repeats (STRs) confidently identifies only first-degree relatives. Massively parallel sequencing (MPS) can access more STRs and resolve alleles identical by length but differing in sequence (isoalleles), which may increase the power of kinship estimation, particularly when combined with additional sequenced single nucleotide polymorphism (SNP) loci, as in the ForenSeq DNA Signature Prep kit. MPS sequencing of ∼10,000 SNPs is available in the ForenSeq Kintelligence kit, promising detection of more distant kin, while SNP chips carrying hundreds of thousands of markers increase resolution still further. Here we evaluate these different resolutions in a set of pedigrees, and via simulations. As expected, the key factor influencing the precision of kinship estimation is the number of markers analysed and MPS-based analysis of STRs increases resolution, with the full set of ForenSeq DNA Signature Prep kit markers allowing detection of third-degree relatives. Since SNP chips include non-autosomal (X- and Y-chromosomal, and mitochondrial [mtDNA]) markers, we ask how these perform within the pedigrees, cross-referencing to Y-STR sequence data. We highlight the importance of understanding haplogroup resolutions in the increasingly complex Y and mtDNA phylogenies, to avoid false exclusions. Incorporation of X-SNPs allows tracing of X-chromosome segments within families. These different approaches can add value to kinship estimation, but some require simpler bioinformatic interfaces to make them more widely accessible in practice, and also access to appropriate allele frequency data to avoid problems associated with ancestry mis-specification.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.50
自引率
32.30%
发文量
132
审稿时长
11.3 weeks
期刊介绍: Forensic Science International: Genetics is the premier journal in the field of Forensic Genetics. This branch of Forensic Science can be defined as the application of genetics to human and non-human material (in the sense of a science with the purpose of studying inherited characteristics for the analysis of inter- and intra-specific variations in populations) for the resolution of legal conflicts. The scope of the journal includes: Forensic applications of human polymorphism. Testing of paternity and other family relationships, immigration cases, typing of biological stains and tissues from criminal casework, identification of human remains by DNA testing methodologies. Description of human polymorphisms of forensic interest, with special interest in DNA polymorphisms. Autosomal DNA polymorphisms, mini- and microsatellites (or short tandem repeats, STRs), single nucleotide polymorphisms (SNPs), X and Y chromosome polymorphisms, mtDNA polymorphisms, and any other type of DNA variation with potential forensic applications. Non-human DNA polymorphisms for crime scene investigation. Population genetics of human polymorphisms of forensic interest. Population data, especially from DNA polymorphisms of interest for the solution of forensic problems. DNA typing methodologies and strategies. Biostatistical methods in forensic genetics. Evaluation of DNA evidence in forensic problems (such as paternity or immigration cases, criminal casework, identification), classical and new statistical approaches. Standards in forensic genetics. Recommendations of regulatory bodies concerning methods, markers, interpretation or strategies or proposals for procedural or technical standards. Quality control. Quality control and quality assurance strategies, proficiency testing for DNA typing methodologies. Criminal DNA databases. Technical, legal and statistical issues. General ethical and legal issues related to forensic genetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信