Aroma analysis and biomarker screening of 27 tea cultivars based on four leaf color types.

Feiquan Wang, Hua Feng, Yucheng Zheng, Ruihua Liu, Jiahao Dong, Yao Wu, Shuai Chen, Bo Zhang, Pengjie Wang, Jiawei Yan
{"title":"Aroma analysis and biomarker screening of 27 tea cultivars based on four leaf color types.","authors":"Feiquan Wang, Hua Feng, Yucheng Zheng, Ruihua Liu, Jiahao Dong, Yao Wu, Shuai Chen, Bo Zhang, Pengjie Wang, Jiawei Yan","doi":"10.1016/j.foodres.2025.115681","DOIUrl":null,"url":null,"abstract":"<p><p>Green is no longer the only color used to describe tea leaves. As tea plants with different leaf colors-white, yellow, and purple-yield significant economic benefits, scholars are growing increasingly curious about whether these differently colored leaves possess unique aromatic characteristics. Headspace solid-phase microextraction (HS-SPME) combined with GC-MS was used to analyze the volatile metabolites of buds and leaves from 7 white-leaf tea plants, 9 yellow-leaf tea plants, 4 purple-leaf tea plants, and 7 normal (green) tea plants. A total of 125 aroma metabolites were identified. The aroma compounds of heterochromatic tea leaves and green-leaf tea were compared separately. It was found that white-leaf tea had the most upregulated compounds (63 up), mainly floral and fruity aromas, including nerol, Z-isogeraniol, and E-3-hexen-1-yl acetate. Purple-leaf tea had the most downregulated compounds (31 down), including β-myrcene, benzyl alcohol, and methyl salicylate, which are related to fresh and fruity aromas. According to variable importance in projection (VIP > 1) and a p-value < 0.05, a total of 40 differential compounds were detected, among which Z-3-hexenol, 1-nonanol, 2,4-di-tert-butylphenol, and 2,6,10,15-tetramethyl-heptadecane were common in all heterochromatic tea. The random forest model constructed using differential metabolites screened out five aroma metabolites, including Z-3-hexenyl isobutyrate, E-3-hexen-1-yl acetate, 2,4-di-tert-butylphenol, Z-jasmone, and Z-isogeraniol. These metabolites demonstrated high accuracy in the model (AUC = 1) and have the potential to serve as characteristic aroma compounds for distinguishing tea leaf colors.</p>","PeriodicalId":94010,"journal":{"name":"Food research international (Ottawa, Ont.)","volume":"201 ","pages":"115681"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food research international (Ottawa, Ont.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.foodres.2025.115681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Green is no longer the only color used to describe tea leaves. As tea plants with different leaf colors-white, yellow, and purple-yield significant economic benefits, scholars are growing increasingly curious about whether these differently colored leaves possess unique aromatic characteristics. Headspace solid-phase microextraction (HS-SPME) combined with GC-MS was used to analyze the volatile metabolites of buds and leaves from 7 white-leaf tea plants, 9 yellow-leaf tea plants, 4 purple-leaf tea plants, and 7 normal (green) tea plants. A total of 125 aroma metabolites were identified. The aroma compounds of heterochromatic tea leaves and green-leaf tea were compared separately. It was found that white-leaf tea had the most upregulated compounds (63 up), mainly floral and fruity aromas, including nerol, Z-isogeraniol, and E-3-hexen-1-yl acetate. Purple-leaf tea had the most downregulated compounds (31 down), including β-myrcene, benzyl alcohol, and methyl salicylate, which are related to fresh and fruity aromas. According to variable importance in projection (VIP > 1) and a p-value < 0.05, a total of 40 differential compounds were detected, among which Z-3-hexenol, 1-nonanol, 2,4-di-tert-butylphenol, and 2,6,10,15-tetramethyl-heptadecane were common in all heterochromatic tea. The random forest model constructed using differential metabolites screened out five aroma metabolites, including Z-3-hexenyl isobutyrate, E-3-hexen-1-yl acetate, 2,4-di-tert-butylphenol, Z-jasmone, and Z-isogeraniol. These metabolites demonstrated high accuracy in the model (AUC = 1) and have the potential to serve as characteristic aroma compounds for distinguishing tea leaf colors.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信