Aroma analysis and biomarker screening of 27 tea cultivars based on four leaf color types.

Feiquan Wang, Hua Feng, Yucheng Zheng, Ruihua Liu, Jiahao Dong, Yao Wu, Shuai Chen, Bo Zhang, Pengjie Wang, Jiawei Yan
{"title":"Aroma analysis and biomarker screening of 27 tea cultivars based on four leaf color types.","authors":"Feiquan Wang, Hua Feng, Yucheng Zheng, Ruihua Liu, Jiahao Dong, Yao Wu, Shuai Chen, Bo Zhang, Pengjie Wang, Jiawei Yan","doi":"10.1016/j.foodres.2025.115681","DOIUrl":null,"url":null,"abstract":"<p><p>Green is no longer the only color used to describe tea leaves. As tea plants with different leaf colors-white, yellow, and purple-yield significant economic benefits, scholars are growing increasingly curious about whether these differently colored leaves possess unique aromatic characteristics. Headspace solid-phase microextraction (HS-SPME) combined with GC-MS was used to analyze the volatile metabolites of buds and leaves from 7 white-leaf tea plants, 9 yellow-leaf tea plants, 4 purple-leaf tea plants, and 7 normal (green) tea plants. A total of 125 aroma metabolites were identified. The aroma compounds of heterochromatic tea leaves and green-leaf tea were compared separately. It was found that white-leaf tea had the most upregulated compounds (63 up), mainly floral and fruity aromas, including nerol, Z-isogeraniol, and E-3-hexen-1-yl acetate. Purple-leaf tea had the most downregulated compounds (31 down), including β-myrcene, benzyl alcohol, and methyl salicylate, which are related to fresh and fruity aromas. According to variable importance in projection (VIP > 1) and a p-value < 0.05, a total of 40 differential compounds were detected, among which Z-3-hexenol, 1-nonanol, 2,4-di-tert-butylphenol, and 2,6,10,15-tetramethyl-heptadecane were common in all heterochromatic tea. The random forest model constructed using differential metabolites screened out five aroma metabolites, including Z-3-hexenyl isobutyrate, E-3-hexen-1-yl acetate, 2,4-di-tert-butylphenol, Z-jasmone, and Z-isogeraniol. These metabolites demonstrated high accuracy in the model (AUC = 1) and have the potential to serve as characteristic aroma compounds for distinguishing tea leaf colors.</p>","PeriodicalId":94010,"journal":{"name":"Food research international (Ottawa, Ont.)","volume":"201 ","pages":"115681"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food research international (Ottawa, Ont.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.foodres.2025.115681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Green is no longer the only color used to describe tea leaves. As tea plants with different leaf colors-white, yellow, and purple-yield significant economic benefits, scholars are growing increasingly curious about whether these differently colored leaves possess unique aromatic characteristics. Headspace solid-phase microextraction (HS-SPME) combined with GC-MS was used to analyze the volatile metabolites of buds and leaves from 7 white-leaf tea plants, 9 yellow-leaf tea plants, 4 purple-leaf tea plants, and 7 normal (green) tea plants. A total of 125 aroma metabolites were identified. The aroma compounds of heterochromatic tea leaves and green-leaf tea were compared separately. It was found that white-leaf tea had the most upregulated compounds (63 up), mainly floral and fruity aromas, including nerol, Z-isogeraniol, and E-3-hexen-1-yl acetate. Purple-leaf tea had the most downregulated compounds (31 down), including β-myrcene, benzyl alcohol, and methyl salicylate, which are related to fresh and fruity aromas. According to variable importance in projection (VIP > 1) and a p-value < 0.05, a total of 40 differential compounds were detected, among which Z-3-hexenol, 1-nonanol, 2,4-di-tert-butylphenol, and 2,6,10,15-tetramethyl-heptadecane were common in all heterochromatic tea. The random forest model constructed using differential metabolites screened out five aroma metabolites, including Z-3-hexenyl isobutyrate, E-3-hexen-1-yl acetate, 2,4-di-tert-butylphenol, Z-jasmone, and Z-isogeraniol. These metabolites demonstrated high accuracy in the model (AUC = 1) and have the potential to serve as characteristic aroma compounds for distinguishing tea leaf colors.

基于4种叶色类型的27个茶叶品种香气分析及生物标志物筛选
绿色不再是用来形容茶叶的唯一颜色。由于不同颜色的茶树——白、黄、紫——具有显著的经济效益,学者们越来越好奇这些不同颜色的叶子是否具有独特的芳香特征。采用顶空固相微萃取(HS-SPME)结合气相色谱-质谱联用技术对7种白叶茶树、9种黄叶茶树、4种紫叶茶树和7种普通(绿)茶树的芽叶挥发物进行了分析。共鉴定出125种香气代谢物。分别比较了异色茶叶和绿叶茶叶的香气成分。研究发现,白叶茶中上调最多的化合物(63个以上),主要是花香和果香味,包括橙花醇、z -异戊二醇和e- 3-己烯-1-乙酸酯。紫叶茶中下调最多的化合物(下调31种),包括β-月桂烯、苯甲醇和水杨酸甲酯,这些化合物与新鲜和水果的香味有关。根据投影中的变量重要性(VIP >1)和一个p值
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信