Efficient conversion of corn straw to feed protein through solid-state fermentation using a thermophilic microbial consortium.

IF 7.1 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Simin Wang, Zhi Wang, Nan Wang, Shilei Wang, Shan Zeng, Zhengzhong Xu, Dong Liu, Xiaoling Zhao, Fan Liu, Jingliang Xu, Yafan Cai, Hanjie Ying
{"title":"Efficient conversion of corn straw to feed protein through solid-state fermentation using a thermophilic microbial consortium.","authors":"Simin Wang, Zhi Wang, Nan Wang, Shilei Wang, Shan Zeng, Zhengzhong Xu, Dong Liu, Xiaoling Zhao, Fan Liu, Jingliang Xu, Yafan Cai, Hanjie Ying","doi":"10.1016/j.wasman.2025.01.023","DOIUrl":null,"url":null,"abstract":"<p><p>Solid-state fermentation of lignocellulosic waste to produce feed protein is a means of realising solid waste. However, low efficiency and susceptibility to microbial contamination remain significant challenges in feed protein production through room-temperature solid-state fermentation. In this study, thermophilic microbiomes were enriched. After adaptive and nitrogen acclimation, microbiomes with the combined functions of 'thermophilic-rapid decomposition-nitrogen conversion' were obtained and used for feed protein production. High-throughput sequencing and Kyoto Encyclopedia of Genes and Genomes metabolic pathway prediction techniques were used to assess the mechanisms underlying microbial involvement in substance conversion. The results showed that the microbiomes decomposed 78.21 %-81.73 % of straw within 7 days. After nitrogen acclimation, the nitrogen utilisation rate and the true protein content of the microbiomes improved by 19.22 %-26.96 % and 56.14 %-71.99 %, respectively. Fed-batch enzymatic saccharification and fermentation reduced the fermentation time by 28.5 %. Domesticated microbiomes increased the abundance of bacteria and fungi in the fermentation system, enhancing carbon metabolism and the urea cycle. This study presents a novel approach for the high-value utilisation of lignocellulose waste.</p>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"194 ","pages":"298-308"},"PeriodicalIF":7.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.wasman.2025.01.023","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Solid-state fermentation of lignocellulosic waste to produce feed protein is a means of realising solid waste. However, low efficiency and susceptibility to microbial contamination remain significant challenges in feed protein production through room-temperature solid-state fermentation. In this study, thermophilic microbiomes were enriched. After adaptive and nitrogen acclimation, microbiomes with the combined functions of 'thermophilic-rapid decomposition-nitrogen conversion' were obtained and used for feed protein production. High-throughput sequencing and Kyoto Encyclopedia of Genes and Genomes metabolic pathway prediction techniques were used to assess the mechanisms underlying microbial involvement in substance conversion. The results showed that the microbiomes decomposed 78.21 %-81.73 % of straw within 7 days. After nitrogen acclimation, the nitrogen utilisation rate and the true protein content of the microbiomes improved by 19.22 %-26.96 % and 56.14 %-71.99 %, respectively. Fed-batch enzymatic saccharification and fermentation reduced the fermentation time by 28.5 %. Domesticated microbiomes increased the abundance of bacteria and fungi in the fermentation system, enhancing carbon metabolism and the urea cycle. This study presents a novel approach for the high-value utilisation of lignocellulose waste.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Waste management
Waste management 环境科学-工程:环境
CiteScore
15.60
自引率
6.20%
发文量
492
审稿时长
39 days
期刊介绍: Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes. Scope: Addresses solid wastes in both industrialized and economically developing countries Covers various types of solid wastes, including: Municipal (e.g., residential, institutional, commercial, light industrial) Agricultural Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信