Efficient conversion of corn straw to feed protein through solid-state fermentation using a thermophilic microbial consortium

IF 7.1 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Simin Wang , Zhi Wang , Nan Wang , Shilei Wang , Shan Zeng , Zhengzhong Xu , Dong Liu , Xiaoling Zhao , Fan Liu , Jingliang Xu , Yafan Cai , Hanjie Ying
{"title":"Efficient conversion of corn straw to feed protein through solid-state fermentation using a thermophilic microbial consortium","authors":"Simin Wang ,&nbsp;Zhi Wang ,&nbsp;Nan Wang ,&nbsp;Shilei Wang ,&nbsp;Shan Zeng ,&nbsp;Zhengzhong Xu ,&nbsp;Dong Liu ,&nbsp;Xiaoling Zhao ,&nbsp;Fan Liu ,&nbsp;Jingliang Xu ,&nbsp;Yafan Cai ,&nbsp;Hanjie Ying","doi":"10.1016/j.wasman.2025.01.023","DOIUrl":null,"url":null,"abstract":"<div><div>Solid-state fermentation of lignocellulosic waste to produce feed protein is a means of realising solid waste. However, low efficiency and susceptibility to microbial contamination remain significant challenges in feed protein production through room-temperature solid-state fermentation. In this study, thermophilic microbiomes were enriched. After adaptive and nitrogen acclimation, microbiomes with the combined functions of ‘thermophilic-rapid decomposition-nitrogen conversion’ were obtained and used for feed protein production. High-throughput sequencing and Kyoto Encyclopedia of Genes and Genomes metabolic pathway prediction techniques were used to assess the mechanisms underlying microbial involvement in substance conversion. The results showed that the microbiomes decomposed 78.21 %–81.73 % of straw within 7 days. After nitrogen acclimation, the nitrogen utilisation rate and the true protein content of the microbiomes improved by 19.22 %–26.96 % and 56.14 %–71.99 %, respectively. Fed-batch enzymatic saccharification and fermentation reduced the fermentation time by 28.5 %. Domesticated microbiomes increased the abundance of bacteria and fungi in the fermentation system, enhancing carbon metabolism and the urea cycle. This study presents a novel approach for the high-value utilisation of lignocellulose waste.</div></div>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"194 ","pages":"Pages 298-308"},"PeriodicalIF":7.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956053X25000236","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Solid-state fermentation of lignocellulosic waste to produce feed protein is a means of realising solid waste. However, low efficiency and susceptibility to microbial contamination remain significant challenges in feed protein production through room-temperature solid-state fermentation. In this study, thermophilic microbiomes were enriched. After adaptive and nitrogen acclimation, microbiomes with the combined functions of ‘thermophilic-rapid decomposition-nitrogen conversion’ were obtained and used for feed protein production. High-throughput sequencing and Kyoto Encyclopedia of Genes and Genomes metabolic pathway prediction techniques were used to assess the mechanisms underlying microbial involvement in substance conversion. The results showed that the microbiomes decomposed 78.21 %–81.73 % of straw within 7 days. After nitrogen acclimation, the nitrogen utilisation rate and the true protein content of the microbiomes improved by 19.22 %–26.96 % and 56.14 %–71.99 %, respectively. Fed-batch enzymatic saccharification and fermentation reduced the fermentation time by 28.5 %. Domesticated microbiomes increased the abundance of bacteria and fungi in the fermentation system, enhancing carbon metabolism and the urea cycle. This study presents a novel approach for the high-value utilisation of lignocellulose waste.

Abstract Image

利用嗜热微生物联合体通过固态发酵将玉米秸秆高效转化为饲料蛋白。
固体发酵木质纤维素废物生产饲料蛋白是实现固体废物的一种手段。然而,低效率和易受微生物污染仍然是饲料蛋白通过室温固态发酵生产的重大挑战。在本研究中,嗜热微生物群被富集。经过适应和氮驯化,获得具有“嗜热-快速分解-氮转化”复合功能的微生物群,用于饲料蛋白质生产。利用高通量测序和京都基因与基因组百科全书代谢途径预测技术来评估微生物参与物质转化的机制。结果表明,7 d内微生物组对秸秆的分解率为78.21% ~ 81.73%。氮驯化后,微生物组氮利用率和真蛋白质含量分别提高了19.22% ~ 26.96%和56.14% ~ 71.99%。补料分批酶解糖化和发酵使发酵时间缩短28.5%。驯化的微生物组增加了发酵系统中细菌和真菌的丰度,促进了碳代谢和尿素循环。本研究为木质纤维素废弃物的高价值利用提供了一种新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Waste management
Waste management 环境科学-工程:环境
CiteScore
15.60
自引率
6.20%
发文量
492
审稿时长
39 days
期刊介绍: Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes. Scope: Addresses solid wastes in both industrialized and economically developing countries Covers various types of solid wastes, including: Municipal (e.g., residential, institutional, commercial, light industrial) Agricultural Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)
文献相关原料
公司名称
产品信息
麦克林
CaCl2
麦克林
MnSO4
阿拉丁
NaCl
阿拉丁
NaOH
阿拉丁
KH2PO4
阿拉丁
Na2HPO4
阿拉丁
MgSO4
阿拉丁
CaCl2
阿拉丁
FeSO4
阿拉丁
MnSO4
阿拉丁
ZnCl2
阿拉丁
CoCl2
阿拉丁
(NH4)2SO4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信