Down-regulation of platelet-derived growth factor receptor β in pericytes increases blood-brain barrier permeability and significantly enhances α-synuclein in a Parkinson’s Disease 3D cell model in vitro under hyperglycemic condition

IF 2.7 4区 生物学 Q1 ANATOMY & MORPHOLOGY
Ting Wang , Meng-yan Li , Zhong Pei , Qiu-Xia Chen , Qiu-sheng Cheng , Ze Li
{"title":"Down-regulation of platelet-derived growth factor receptor β in pericytes increases blood-brain barrier permeability and significantly enhances α-synuclein in a Parkinson’s Disease 3D cell model in vitro under hyperglycemic condition","authors":"Ting Wang ,&nbsp;Meng-yan Li ,&nbsp;Zhong Pei ,&nbsp;Qiu-Xia Chen ,&nbsp;Qiu-sheng Cheng ,&nbsp;Ze Li","doi":"10.1016/j.tice.2025.102751","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Parkinson's Disease (PD) often presents with a compromised blood-brain barrier (BBB), which hyperglycemia may exacerbate. Pericytes, a key cell for BBB integrity, are potential therapeutic targets for neurodegenerative disorders. Few studies have developed 3D PD cell models incorporating neurovascular units (NVU) through the co-culture of human endothelial, pericytes, astrocytes, and SH-SY5Y cells to evaluate BBB impairment and the role of pericytes under hyperglycemic condition.</div></div><div><h3>Method</h3><div>A 3D PD like cell model was developed using 6-OHDA-affected SH-SY5Y cells, combined with endothelial cells, pericytes, and astrocytes through the Real Architecture for Tissue (RAFT) 3D co-culture system. PD incorporating reduced (30 % and 89 %) PDGFRβ NVU (RPN) with or without hyperglycemic model (HM) were also established. BBB permeability to sodium fluorescein was assessed, and BBB impairment was evaluated using BBB-associated proteins (ZO-1, CD54, CD144), cell-specific proteins (CD31, GFAP, PDGFRβ, CD13), tyrosine hydroxylase (TH), α-synuclein, oligomeric α-synuclein, and α-synuclein (ser9).</div></div><div><h3>Results</h3><div>PD 3D cell models incorporating RPN with or without hyperglycemia were successfully established in <em>vitro</em>. Graduately increased BBB impairment was observed in PD, PD with RPN, and PD with RPN combined with HM, indicated by decreased BBB-associated and cell-specific proteins, reduced TH, and increased α-synuclein, oligomeric α-synuclein, and α-synuclein (ser9) compared to the NVU model.</div></div><div><h3>Conclusion</h3><div>Reduced pericyte PDGFRβ could increase BBB permeability, accelerate PD progression, and exacerbate under hyperglycemic condition.</div></div>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"93 ","pages":"Article 102751"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004081662500031X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Parkinson's Disease (PD) often presents with a compromised blood-brain barrier (BBB), which hyperglycemia may exacerbate. Pericytes, a key cell for BBB integrity, are potential therapeutic targets for neurodegenerative disorders. Few studies have developed 3D PD cell models incorporating neurovascular units (NVU) through the co-culture of human endothelial, pericytes, astrocytes, and SH-SY5Y cells to evaluate BBB impairment and the role of pericytes under hyperglycemic condition.

Method

A 3D PD like cell model was developed using 6-OHDA-affected SH-SY5Y cells, combined with endothelial cells, pericytes, and astrocytes through the Real Architecture for Tissue (RAFT) 3D co-culture system. PD incorporating reduced (30 % and 89 %) PDGFRβ NVU (RPN) with or without hyperglycemic model (HM) were also established. BBB permeability to sodium fluorescein was assessed, and BBB impairment was evaluated using BBB-associated proteins (ZO-1, CD54, CD144), cell-specific proteins (CD31, GFAP, PDGFRβ, CD13), tyrosine hydroxylase (TH), α-synuclein, oligomeric α-synuclein, and α-synuclein (ser9).

Results

PD 3D cell models incorporating RPN with or without hyperglycemia were successfully established in vitro. Graduately increased BBB impairment was observed in PD, PD with RPN, and PD with RPN combined with HM, indicated by decreased BBB-associated and cell-specific proteins, reduced TH, and increased α-synuclein, oligomeric α-synuclein, and α-synuclein (ser9) compared to the NVU model.

Conclusion

Reduced pericyte PDGFRβ could increase BBB permeability, accelerate PD progression, and exacerbate under hyperglycemic condition.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tissue & cell
Tissue & cell 医学-解剖学与形态学
CiteScore
3.90
自引率
0.00%
发文量
234
期刊介绍: Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed. Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信