Biosynthesis of Lysosomally Escaped Apoptotic Bodies Inhibits Inflammasome Synthesis in Macrophages.

IF 11 1区 综合性期刊 Q1 Multidisciplinary
Research Pub Date : 2025-01-23 eCollection Date: 2025-01-01 DOI:10.34133/research.0581
Jiayi Mao, Wenzheng Xia, Yanglin Wu, Minxiong Li, Yun Zhao, Peisong Zhai, Yuguang Zhang, Tao Zan, Wenguo Cui, Xiaoming Sun
{"title":"Biosynthesis of Lysosomally Escaped Apoptotic Bodies Inhibits Inflammasome Synthesis in Macrophages.","authors":"Jiayi Mao, Wenzheng Xia, Yanglin Wu, Minxiong Li, Yun Zhao, Peisong Zhai, Yuguang Zhang, Tao Zan, Wenguo Cui, Xiaoming Sun","doi":"10.34133/research.0581","DOIUrl":null,"url":null,"abstract":"<p><p>Hyperglycemia and bacterial colonization in diabetic wounds aberrantly activate Nod-like receptor protein 3 (NLRP3) in macrophages, resulting in extensive inflammatory infiltration and impaired wound healing. Targeted suppression of the NLRP3 inflammasome shows promise in reducing macrophage inflammatory disruptions. However, challenges such as drug off-target effects and degradation via lysosomal capture remain during treatment. In this study, engineered apoptotic bodies (BHB-dABs) derived from adipose stem cells loaded with β-hydroxybutyric acid (BHB) were synthesized via biosynthesis. These vesicles target M1-type macrophages, which highly express the folic acid receptor in the inflammatory microenvironment, and facilitate lysosomal escape through 1,2-distearoyl-<i>sn</i>-propyltriyl-3-phosphatidylethanolamine-polyethylene glycol functionalization, which may enhance the efficacy of NLRP3 inhibition for managing diabetic wounds. In vitro studies demonstrated the biocompatibility of BHB-dABs, their selective targeting of M1-type macrophages, and their ability to release BHB within the inflammatory microenvironment via folic acid and folic acid receptor signaling. These nanovesicles exhibited lysosomal escape, anti-inflammatory, mitochondrial protection, and endothelial cell vascularization properties. In vivo experiments demonstrated that BHB-dABs enhance the recovery of diabetic wound inflammation and angiogenesis, accelerating wound healing. These functionalized apoptotic bodies efficiently deliver NLRP3 inflammasome inhibitors using a dual strategy of targeting macrophages and promoting lysosomal escape. This approach represents a novel therapeutic strategy for effectively treating chronic diabetic wounds.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0581"},"PeriodicalIF":11.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754539/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0581","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Hyperglycemia and bacterial colonization in diabetic wounds aberrantly activate Nod-like receptor protein 3 (NLRP3) in macrophages, resulting in extensive inflammatory infiltration and impaired wound healing. Targeted suppression of the NLRP3 inflammasome shows promise in reducing macrophage inflammatory disruptions. However, challenges such as drug off-target effects and degradation via lysosomal capture remain during treatment. In this study, engineered apoptotic bodies (BHB-dABs) derived from adipose stem cells loaded with β-hydroxybutyric acid (BHB) were synthesized via biosynthesis. These vesicles target M1-type macrophages, which highly express the folic acid receptor in the inflammatory microenvironment, and facilitate lysosomal escape through 1,2-distearoyl-sn-propyltriyl-3-phosphatidylethanolamine-polyethylene glycol functionalization, which may enhance the efficacy of NLRP3 inhibition for managing diabetic wounds. In vitro studies demonstrated the biocompatibility of BHB-dABs, their selective targeting of M1-type macrophages, and their ability to release BHB within the inflammatory microenvironment via folic acid and folic acid receptor signaling. These nanovesicles exhibited lysosomal escape, anti-inflammatory, mitochondrial protection, and endothelial cell vascularization properties. In vivo experiments demonstrated that BHB-dABs enhance the recovery of diabetic wound inflammation and angiogenesis, accelerating wound healing. These functionalized apoptotic bodies efficiently deliver NLRP3 inflammasome inhibitors using a dual strategy of targeting macrophages and promoting lysosomal escape. This approach represents a novel therapeutic strategy for effectively treating chronic diabetic wounds.

巨噬细胞中溶酶体逃逸凋亡小体的生物合成抑制炎性小体的合成。
糖尿病创面中的高血糖和细菌定植异常激活巨噬细胞中的nod样受体蛋白3 (NLRP3),导致广泛的炎症浸润和创面愈合受损。靶向抑制NLRP3炎性小体有望减少巨噬细胞炎症破坏。然而,在治疗期间,诸如药物脱靶效应和通过溶酶体捕获的降解等挑战仍然存在。在本研究中,通过生物合成的方法合成了来自脂肪干细胞负载β-羟基丁酸(BHB)的工程凋亡小体(BHB- dabs)。这些囊泡靶向炎症微环境中高表达叶酸受体的m1型巨噬细胞,并通过1,2-二硬脂酰- n-丙基三基-3-磷脂酰乙醇胺-聚乙二醇功能化促进溶酶体逃逸,可能增强NLRP3抑制治疗糖尿病伤口的效果。体外研究证明了BHB- dabs的生物相容性,它们对m1型巨噬细胞的选择性靶向,以及它们通过叶酸和叶酸受体信号在炎症微环境中释放BHB的能力。这些纳米囊泡具有溶酶体逃逸、抗炎、线粒体保护和内皮细胞血管化的特性。体内实验表明,BHB-dABs可促进糖尿病创面炎症和血管生成的恢复,加速创面愈合。这些功能化的凋亡小体通过靶向巨噬细胞和促进溶酶体逃逸的双重策略有效地递送NLRP3炎症小体抑制剂。这种方法代表了一种有效治疗慢性糖尿病伤口的新治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Research
Research Multidisciplinary-Multidisciplinary
CiteScore
13.40
自引率
3.60%
发文量
0
审稿时长
14 weeks
期刊介绍: Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe. Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信