Yating Deng, Wujuan Sun, Yongbin Li, Jun Wei, Ruirui Rao, Qiongyu Cao, Sichang Wang, Qunzheng Zhang, Congyu Ke
{"title":"Innovative microbial activators for enhanced bioremediation of oil-contaminated soils: mechanistic insights.","authors":"Yating Deng, Wujuan Sun, Yongbin Li, Jun Wei, Ruirui Rao, Qiongyu Cao, Sichang Wang, Qunzheng Zhang, Congyu Ke","doi":"10.1007/s11274-025-04258-1","DOIUrl":null,"url":null,"abstract":"<p><p>This paper developed an efficient microbial activator formula and conducted an in-depth study on its efficacy and mechanism in promoting the degradation of petroleum hydrocarbons in oil-contaminated soil. A 60-day microbial remediation experiment conducted on oily soil revealed that the microbial activators significantly boosted the activities of dehydrogenase and catalase, subsequently speeding up the degradation of petroleum hydrocarbons in the soil. The overall degradation rate reached as high as 71.23%, with the most significant degradation effect observed in asphaltenes, achieving a degradation rate of 93.98%. This was followed by aromatic hydrocarbons (90.45%), saturated hydrocarbons (84.39%), and asphaltenes (65%). Compared to traditional microbial stimulation methods, this activator demonstrated significant superiority. Microbial diversity analysis reveals that microbial activators can effectively activate microbial activity in soil targeting refractory petroleum hydrocarbon components. By comparing the changes in microbial community structure before and after the addition of microbial activators, we found that the activators promoted an increase in the abundance of microorganisms belonging to the Bacillota, Pseudomonadota, and Bacteroidetes, which have petroleum hydrocarbon degradation functions, and facilitated the evolution of microbial community structure towards a direction more conducive to petroleum hydrocarbon degradation. KEGG metabolic pathway analysis revealed that the degradation pathways for alkanes, aromatic hydrocarbons, and PAHs are primarily present in these bacterial phylum. This research not only clarifies the degradation mechanism but also supports future bioremediation efforts.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 2","pages":"47"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-025-04258-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper developed an efficient microbial activator formula and conducted an in-depth study on its efficacy and mechanism in promoting the degradation of petroleum hydrocarbons in oil-contaminated soil. A 60-day microbial remediation experiment conducted on oily soil revealed that the microbial activators significantly boosted the activities of dehydrogenase and catalase, subsequently speeding up the degradation of petroleum hydrocarbons in the soil. The overall degradation rate reached as high as 71.23%, with the most significant degradation effect observed in asphaltenes, achieving a degradation rate of 93.98%. This was followed by aromatic hydrocarbons (90.45%), saturated hydrocarbons (84.39%), and asphaltenes (65%). Compared to traditional microbial stimulation methods, this activator demonstrated significant superiority. Microbial diversity analysis reveals that microbial activators can effectively activate microbial activity in soil targeting refractory petroleum hydrocarbon components. By comparing the changes in microbial community structure before and after the addition of microbial activators, we found that the activators promoted an increase in the abundance of microorganisms belonging to the Bacillota, Pseudomonadota, and Bacteroidetes, which have petroleum hydrocarbon degradation functions, and facilitated the evolution of microbial community structure towards a direction more conducive to petroleum hydrocarbon degradation. KEGG metabolic pathway analysis revealed that the degradation pathways for alkanes, aromatic hydrocarbons, and PAHs are primarily present in these bacterial phylum. This research not only clarifies the degradation mechanism but also supports future bioremediation efforts.
期刊介绍:
World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology.
Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions.
Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories:
· Virology
· Simple isolation of microbes from local sources
· Simple descriptions of an environment or reports on a procedure
· Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism
· Data reporting on host response to microbes
· Optimization of a procedure
· Description of the biological effects of not fully identified compounds or undefined extracts of natural origin
· Data on not fully purified enzymes or procedures in which they are applied
All articles published in the Journal are independently refereed.