A multifunctional photothermal electrospun PLGA/MoS2@Pd nanofiber membrane for diabetic wound healing.

IF 5.6 1区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Regenerative Biomaterials Pub Date : 2024-12-14 eCollection Date: 2025-01-01 DOI:10.1093/rb/rbae143
Zhengrong Chen, Quansheng Mo, Dandan Mo, Xiaomin Pei, Anru Liang, Jinhong Cai, Bo Zhou, Li Zheng, Hongmian Li, Feiying Yin, Jinmin Zhao
{"title":"A multifunctional photothermal electrospun PLGA/MoS<sub>2</sub>@Pd nanofiber membrane for diabetic wound healing.","authors":"Zhengrong Chen, Quansheng Mo, Dandan Mo, Xiaomin Pei, Anru Liang, Jinhong Cai, Bo Zhou, Li Zheng, Hongmian Li, Feiying Yin, Jinmin Zhao","doi":"10.1093/rb/rbae143","DOIUrl":null,"url":null,"abstract":"<p><p>Injury caused by excess reactive oxygen species (ROS) may lead to susceptibility to bacterial infection and sustained inflammatory response, which are the major factors impeding diabetic wound healing. By utilizing optimal anti-inflammatory, antioxidant and antibacterial biomaterials for multifunctional wound dressings is critical in clinical applications. In this study, a novel electrospun PLGA/MoS<sub>2</sub>@Pd nanofiber membrane was synthesized by encapsulating antioxidant and near-infrared (NIR) responsive MOS<sub>2</sub>@Pd nanozymes in PLGA nanofibers to form a multifunctional dressing for diabetic wound repair. With excellent biocompatibility and hemostatic ability, this novel PLGA/MoS<sub>2</sub>@Pd nanofiber membrane can effectively reduce oxidative stress damage and intracellular inflammatory factors expression in fibroblasts by scavenging ROS. Additionally, the PLGA/MoS<sub>2</sub>@Pd nanofiber membrane exhibited favorable NIR-mediated photothermal antibacterial activity <i>in vitro</i>, with inhibition rates of 97.14% and 97.07% against <i>Staphylococcus aureus</i> (<i>S.aureus</i>) and <i>Escherichia coli</i> (<i>E.col</i>i), respectively. In a diabetic rat wound infection model, NIR-assisted PLGA/MoS<sub>2</sub>@Pd nanofiber membrane effectively inhibited bacterial growth in the wound, reduced infection-induced inflammatory response, and promoted tissue epithelialization and collagen deposition, resulting in a wound healing rate of up to 98.5% on Day 14. This study highlighted the construction of a multifunctional nanofiber membrane platform and demonstrated its promising potential as a clinical dressing for diabetic wounds.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"12 ","pages":"rbae143"},"PeriodicalIF":5.6000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754638/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/rb/rbae143","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Injury caused by excess reactive oxygen species (ROS) may lead to susceptibility to bacterial infection and sustained inflammatory response, which are the major factors impeding diabetic wound healing. By utilizing optimal anti-inflammatory, antioxidant and antibacterial biomaterials for multifunctional wound dressings is critical in clinical applications. In this study, a novel electrospun PLGA/MoS2@Pd nanofiber membrane was synthesized by encapsulating antioxidant and near-infrared (NIR) responsive MOS2@Pd nanozymes in PLGA nanofibers to form a multifunctional dressing for diabetic wound repair. With excellent biocompatibility and hemostatic ability, this novel PLGA/MoS2@Pd nanofiber membrane can effectively reduce oxidative stress damage and intracellular inflammatory factors expression in fibroblasts by scavenging ROS. Additionally, the PLGA/MoS2@Pd nanofiber membrane exhibited favorable NIR-mediated photothermal antibacterial activity in vitro, with inhibition rates of 97.14% and 97.07% against Staphylococcus aureus (S.aureus) and Escherichia coli (E.coli), respectively. In a diabetic rat wound infection model, NIR-assisted PLGA/MoS2@Pd nanofiber membrane effectively inhibited bacterial growth in the wound, reduced infection-induced inflammatory response, and promoted tissue epithelialization and collagen deposition, resulting in a wound healing rate of up to 98.5% on Day 14. This study highlighted the construction of a multifunctional nanofiber membrane platform and demonstrated its promising potential as a clinical dressing for diabetic wounds.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Regenerative Biomaterials
Regenerative Biomaterials Materials Science-Biomaterials
CiteScore
7.90
自引率
16.40%
发文量
92
审稿时长
10 weeks
期刊介绍: Regenerative Biomaterials is an international, interdisciplinary, peer-reviewed journal publishing the latest advances in biomaterials and regenerative medicine. The journal provides a forum for the publication of original research papers, reviews, clinical case reports, and commentaries on the topics relevant to the development of advanced regenerative biomaterials concerning novel regenerative technologies and therapeutic approaches for the regeneration and repair of damaged tissues and organs. The interactions of biomaterials with cells and tissue, especially with stem cells, will be of particular focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信