Shayenthiran Sreetharan, Stephanie Puukila, Christine Lalonde, Jake Pirkkanen, Gayle E Woloschak, Tatjana Paunesku, Antone L Brooks, Fiona E McNeill, Christopher Thome, Douglas R Boreham, Simon J Lees, Sujeenthar Tharmalingam, T C Tai
{"title":"Comparison of Acute and Protracted Gamma Irradiation Effects During Perinatal Development in Beagle Dogs.","authors":"Shayenthiran Sreetharan, Stephanie Puukila, Christine Lalonde, Jake Pirkkanen, Gayle E Woloschak, Tatjana Paunesku, Antone L Brooks, Fiona E McNeill, Christopher Thome, Douglas R Boreham, Simon J Lees, Sujeenthar Tharmalingam, T C Tai","doi":"10.1667/RADE-24-00080.1","DOIUrl":null,"url":null,"abstract":"<p><p>Ionizing radiation exposure during perinatal development can produce various biological effects on the developing offspring. These effects are dependent on a number of factors, including total dose, dose rate and the developmental processes occurring at the time of irradiation. The present study conducted an analysis of historical radiobiological archived data involving 60Co-gamma irradiation of beagle dogs at specific periods of prenatal or postnatal development. The original studies were performed at two sites where animals were exposed to a single, acute dose of 0.2 or 1.0 Gy at six different stages of perinatal development or with protracted exposures ranging from 0.004 to 0.35 Gy per day, over multiple days of gestation. A number of outcomes were investigated after perinatal irradiation including changes in sex ratio, survival probability, disease incidence and growth of animals, based on collected size and weight measurements of animals and different tissues. Protracted irradiations with doses up to 0.35 Gy per day did not significantly affect survival in animals when irradiated prenatally, although significant increases in the incidence of neoplasms and diseases related to the cardiovascular and urogenital system were observed at the time of death. Dogs irradiated at a dose rate of 0.10 Gy per day, with the irradiations continuing after birth and resulting in the accumulation of large total doses, were observed to have chronic radiation syndrome symptoms based on pathologies related to the hematopoietic system. Acute irradiation with 0.2 and 1.0 Gy resulted in changes of different body or tissue sizes measured in animals terminally, with changes detected after irradiation at all tested prenatal and postnatal time points, with the exception of irradiation at 365 days after birth. The present analysis provides new information regarding the biological effects of ionizing radiation during perinatal development in offspring in the unique mammalian study model of the beagle dog.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1667/RADE-24-00080.1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ionizing radiation exposure during perinatal development can produce various biological effects on the developing offspring. These effects are dependent on a number of factors, including total dose, dose rate and the developmental processes occurring at the time of irradiation. The present study conducted an analysis of historical radiobiological archived data involving 60Co-gamma irradiation of beagle dogs at specific periods of prenatal or postnatal development. The original studies were performed at two sites where animals were exposed to a single, acute dose of 0.2 or 1.0 Gy at six different stages of perinatal development or with protracted exposures ranging from 0.004 to 0.35 Gy per day, over multiple days of gestation. A number of outcomes were investigated after perinatal irradiation including changes in sex ratio, survival probability, disease incidence and growth of animals, based on collected size and weight measurements of animals and different tissues. Protracted irradiations with doses up to 0.35 Gy per day did not significantly affect survival in animals when irradiated prenatally, although significant increases in the incidence of neoplasms and diseases related to the cardiovascular and urogenital system were observed at the time of death. Dogs irradiated at a dose rate of 0.10 Gy per day, with the irradiations continuing after birth and resulting in the accumulation of large total doses, were observed to have chronic radiation syndrome symptoms based on pathologies related to the hematopoietic system. Acute irradiation with 0.2 and 1.0 Gy resulted in changes of different body or tissue sizes measured in animals terminally, with changes detected after irradiation at all tested prenatal and postnatal time points, with the exception of irradiation at 365 days after birth. The present analysis provides new information regarding the biological effects of ionizing radiation during perinatal development in offspring in the unique mammalian study model of the beagle dog.
期刊介绍:
Radiation Research publishes original articles dealing with radiation effects and related subjects in the areas of physics, chemistry, biology
and medicine, including epidemiology and translational research. The term radiation is used in its broadest sense and includes specifically
ionizing radiation and ultraviolet, visible and infrared light as well as microwaves, ultrasound and heat. Effects may be physical, chemical or
biological. Related subjects include (but are not limited to) dosimetry methods and instrumentation, isotope techniques and studies with
chemical agents contributing to the understanding of radiation effects.