Soham Mandal, Ann-Marie Baker, Trevor A Graham, Konstantin Bräutigam
{"title":"The tumour histopathology \"glossary\" for AI developers.","authors":"Soham Mandal, Ann-Marie Baker, Trevor A Graham, Konstantin Bräutigam","doi":"10.1371/journal.pcbi.1012708","DOIUrl":null,"url":null,"abstract":"<p><p>The applications of artificial intelligence (AI) and deep learning (DL) are leading to significant advances in cancer research, particularly in analysing histopathology images for prognostic and treatment-predictive insights. However, effective translation of these computational methods requires computational researchers to have at least a basic understanding of histopathology. In this work, we aim to bridge that gap by introducing essential histopathology concepts to support AI developers in their research. We cover the defining features of key cell types, including epithelial, stromal, and immune cells. The concepts of malignancy, precursor lesions, and the tumour microenvironment (TME) are discussed and illustrated. To enhance understanding, we also introduce foundational histopathology techniques, such as conventional staining with hematoxylin and eosin (HE), antibody staining by immunohistochemistry, and including the new multiplexed antibody staining methods. By providing this essential knowledge to the computational community, we aim to accelerate the development of AI algorithms for cancer research.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 1","pages":"e1012708"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756763/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012708","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The applications of artificial intelligence (AI) and deep learning (DL) are leading to significant advances in cancer research, particularly in analysing histopathology images for prognostic and treatment-predictive insights. However, effective translation of these computational methods requires computational researchers to have at least a basic understanding of histopathology. In this work, we aim to bridge that gap by introducing essential histopathology concepts to support AI developers in their research. We cover the defining features of key cell types, including epithelial, stromal, and immune cells. The concepts of malignancy, precursor lesions, and the tumour microenvironment (TME) are discussed and illustrated. To enhance understanding, we also introduce foundational histopathology techniques, such as conventional staining with hematoxylin and eosin (HE), antibody staining by immunohistochemistry, and including the new multiplexed antibody staining methods. By providing this essential knowledge to the computational community, we aim to accelerate the development of AI algorithms for cancer research.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.