Max de Rooij, Balázs Erdős, Natal A W van Riel, Shauna D O'Donovan
{"title":"Physiology-informed regularisation enables training of universal differential equation systems for biological applications.","authors":"Max de Rooij, Balázs Erdős, Natal A W van Riel, Shauna D O'Donovan","doi":"10.1371/journal.pcbi.1012198","DOIUrl":null,"url":null,"abstract":"<p><p>Systems biology tackles the challenge of understanding the high complexity in the internal regulation of homeostasis in the human body through mathematical modelling. These models can aid in the discovery of disease mechanisms and potential drug targets. However, on one hand the development and validation of knowledge-based mechanistic models is time-consuming and does not scale well with increasing features in medical data. On the other hand, data-driven approaches such as machine learning models require large volumes of data to produce generalisable models. The integration of neural networks and mechanistic models, forming universal differential equation (UDE) models, enables the automated learning of unknown model terms with less data than neural networks alone. Nevertheless, estimating parameters for these hybrid models remains difficult with sparse data and limited sampling durations that are common in biological applications. In this work, we propose the use of physiology-informed regularisation, penalising biologically implausible model behavior to guide the UDE towards more physiologically plausible regions of the solution space. In a simulation study we show that physiology-informed regularisation not only results in a more accurate forecasting of model behaviour, but also supports training with less data. We also applied this technique to learn a representation of the rate of glucose appearance in the glucose minimal model using meal response data measured in healthy people. In that case, the inclusion of regularisation reduces variability between UDE-embedded neural networks that were trained from different initial parameter guesses.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 1","pages":"e1012198"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771921/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012198","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Systems biology tackles the challenge of understanding the high complexity in the internal regulation of homeostasis in the human body through mathematical modelling. These models can aid in the discovery of disease mechanisms and potential drug targets. However, on one hand the development and validation of knowledge-based mechanistic models is time-consuming and does not scale well with increasing features in medical data. On the other hand, data-driven approaches such as machine learning models require large volumes of data to produce generalisable models. The integration of neural networks and mechanistic models, forming universal differential equation (UDE) models, enables the automated learning of unknown model terms with less data than neural networks alone. Nevertheless, estimating parameters for these hybrid models remains difficult with sparse data and limited sampling durations that are common in biological applications. In this work, we propose the use of physiology-informed regularisation, penalising biologically implausible model behavior to guide the UDE towards more physiologically plausible regions of the solution space. In a simulation study we show that physiology-informed regularisation not only results in a more accurate forecasting of model behaviour, but also supports training with less data. We also applied this technique to learn a representation of the rate of glucose appearance in the glucose minimal model using meal response data measured in healthy people. In that case, the inclusion of regularisation reduces variability between UDE-embedded neural networks that were trained from different initial parameter guesses.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.