Data-driven discovery and parameter estimation of mathematical models in biological pattern formation.

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
PLoS Computational Biology Pub Date : 2025-01-23 eCollection Date: 2025-01-01 DOI:10.1371/journal.pcbi.1012689
Hidekazu Hishinuma, Hisako Takigawa-Imamura, Takashi Miura
{"title":"Data-driven discovery and parameter estimation of mathematical models in biological pattern formation.","authors":"Hidekazu Hishinuma, Hisako Takigawa-Imamura, Takashi Miura","doi":"10.1371/journal.pcbi.1012689","DOIUrl":null,"url":null,"abstract":"<p><p>Mathematical modeling has been utilized to explain biological pattern formation, but the selections of models and parameters have been made empirically. In the present study, we propose a data-driven approach to validate the applicability of mathematical models. Specifically, we developed methods to automatically select the appropriate mathematical models based on the patterns of interest and to estimate the model parameters. For model selection, we employed Contrastive Language-Image Pre-training (CLIP) for zero-shot feature extraction, mapping the given pattern images to latent space and specifying the appropriate model. For parameter estimation, we developed a novel technique that rapidly performs approximate Bayesian inference based on Natural Gradient Boosting (NGBoost). This method allows for parameter estimation under minimal constraints; i.e., it does not require time-series data or initial conditions and is applicable to various types of mathematical models. We tested the method with Turing patterns and demonstrated its high accuracy and correspondence to analytical features. Our strategy enables efficient validation of mathematical models using spatial patterns.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 1","pages":"e1012689"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756800/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012689","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Mathematical modeling has been utilized to explain biological pattern formation, but the selections of models and parameters have been made empirically. In the present study, we propose a data-driven approach to validate the applicability of mathematical models. Specifically, we developed methods to automatically select the appropriate mathematical models based on the patterns of interest and to estimate the model parameters. For model selection, we employed Contrastive Language-Image Pre-training (CLIP) for zero-shot feature extraction, mapping the given pattern images to latent space and specifying the appropriate model. For parameter estimation, we developed a novel technique that rapidly performs approximate Bayesian inference based on Natural Gradient Boosting (NGBoost). This method allows for parameter estimation under minimal constraints; i.e., it does not require time-series data or initial conditions and is applicable to various types of mathematical models. We tested the method with Turing patterns and demonstrated its high accuracy and correspondence to analytical features. Our strategy enables efficient validation of mathematical models using spatial patterns.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Computational Biology
PLoS Computational Biology BIOCHEMICAL RESEARCH METHODS-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.10
自引率
4.70%
发文量
820
审稿时长
2.5 months
期刊介绍: PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery. Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines. Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights. Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology. Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信