{"title":"Cytoplasmic G6PDs modulate callus formation in Arabidopsis root explants through regulation of very-long-chain fatty acids accumulation.","authors":"Junjie Li, Xiaofan Na, Chang Qi, Ruiqing Shi, Kaile Li, Jie Jin, Ziyu Liu, Meiyun Pu, Shengwang Wang, Hao Sun, Xiaomin Wang, Yurong Bi","doi":"10.1016/j.plaphy.2025.109526","DOIUrl":null,"url":null,"abstract":"<p><p>Glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme in the pentose phosphate pathway, impacts cancer cell proliferation and plant stress responses. However, its role in plant cell dedifferentiation and callus formation is not well understood. This study explores the function of cytoplasmic G6PD isoforms in Arabidopsis pericycle cell reprogramming into callus by employing a suite of mutant analyses, qRT-PCR, and GC-MS. Our findings demonstrate that g6pd5/6 double mutants exhibit enhanced callus formation compared to wild-type and single mutants, implicating cytoplasmic G6PDs as negative regulators of callus development. The double mutant showed reduced NADPH levels and increased expression of very-long-chain fatty acid (VLCFA) biosynthesis genes and the VLCFA-downstream gene Aberrant Lateral Root Formation 4 (ALF4) on callus-inducing medium (CIM). Notably, VLCFA concentrations were decreased in g6pd5/6 mutants, and supplementation of VLCFA reduced callus area. Additionally, callus formation in the alf4/g6pd5/6 triple mutant aligned with wild-type, suggesting a redundant inhibitory function of G6PD5 and G6PD6 in the regulation of VLCFA accumulation and related signaling. Contrasting with their roles in cancer cell proliferation, our study unveils novel insights into the G6PD signaling pathway, highlighting its unique function in negatively regulating plant callus formation.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109526"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2025.109526","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme in the pentose phosphate pathway, impacts cancer cell proliferation and plant stress responses. However, its role in plant cell dedifferentiation and callus formation is not well understood. This study explores the function of cytoplasmic G6PD isoforms in Arabidopsis pericycle cell reprogramming into callus by employing a suite of mutant analyses, qRT-PCR, and GC-MS. Our findings demonstrate that g6pd5/6 double mutants exhibit enhanced callus formation compared to wild-type and single mutants, implicating cytoplasmic G6PDs as negative regulators of callus development. The double mutant showed reduced NADPH levels and increased expression of very-long-chain fatty acid (VLCFA) biosynthesis genes and the VLCFA-downstream gene Aberrant Lateral Root Formation 4 (ALF4) on callus-inducing medium (CIM). Notably, VLCFA concentrations were decreased in g6pd5/6 mutants, and supplementation of VLCFA reduced callus area. Additionally, callus formation in the alf4/g6pd5/6 triple mutant aligned with wild-type, suggesting a redundant inhibitory function of G6PD5 and G6PD6 in the regulation of VLCFA accumulation and related signaling. Contrasting with their roles in cancer cell proliferation, our study unveils novel insights into the G6PD signaling pathway, highlighting its unique function in negatively regulating plant callus formation.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.