Argonaute 2 regulates nuclear DNA damage, repair, and phenotypes in Arabidopsis under genotoxic stress.

IF 6.1 2区 生物学 Q1 PLANT SCIENCES
Jin-Hong Kim, Shubham Kumar Dubey, Tae Ho Ryu, Seung Sik Lee, Byung Yeoup Chung
{"title":"Argonaute 2 regulates nuclear DNA damage, repair, and phenotypes in Arabidopsis under genotoxic stress.","authors":"Jin-Hong Kim, Shubham Kumar Dubey, Tae Ho Ryu, Seung Sik Lee, Byung Yeoup Chung","doi":"10.1016/j.plaphy.2025.109528","DOIUrl":null,"url":null,"abstract":"<p><p>Argonaute (AGO) proteins are involved in gene expression and genome integrity during biotic and abiotic stress responses. AGO2 mediates double-strand break (DSB) repair in DNA damage response (DDR) induced by genotoxic stress. However, beyond DSB repair, the involvement of AGO proteins in DDR remains unknown. To investigate the potential roles and functions of AGO2 in DDR, we exposed three different ago2 mutants, each harboring a T-DNA insertion in the promoter, the N-terminal domain of exon 2, or the P-element-induced wimpy testis (PIWI) domain of exon 3, to genotoxic stress, and examined their DDR phenotypes. DDR phenotypes, such as root cell death and growth inhibition following γ-irradiation and zeocin treatment, were significantly suppressed by defects in the promoter or N-terminal domain of AGO2 but not by defects in the PIWI domain, which is responsible for RNA silencing. The weak DDR phenotypes were rescued by AGO2 overexpression and were attributed to reduced nuclear DNA damage despite impaired DNA repair, including DSB repair, as shown in comet and γH2AX assays. These results suggest that AGO2 regulates overall nuclear DNA damage and DDR phenotypes beyond DSB repair through the N-terminal domain rather than the PIWI domain. The potential role of AGO2 in the DDR implies that DNA repair may not be the primary factor for determining susceptibility to genotoxic stress.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109528"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2025.109528","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Argonaute (AGO) proteins are involved in gene expression and genome integrity during biotic and abiotic stress responses. AGO2 mediates double-strand break (DSB) repair in DNA damage response (DDR) induced by genotoxic stress. However, beyond DSB repair, the involvement of AGO proteins in DDR remains unknown. To investigate the potential roles and functions of AGO2 in DDR, we exposed three different ago2 mutants, each harboring a T-DNA insertion in the promoter, the N-terminal domain of exon 2, or the P-element-induced wimpy testis (PIWI) domain of exon 3, to genotoxic stress, and examined their DDR phenotypes. DDR phenotypes, such as root cell death and growth inhibition following γ-irradiation and zeocin treatment, were significantly suppressed by defects in the promoter or N-terminal domain of AGO2 but not by defects in the PIWI domain, which is responsible for RNA silencing. The weak DDR phenotypes were rescued by AGO2 overexpression and were attributed to reduced nuclear DNA damage despite impaired DNA repair, including DSB repair, as shown in comet and γH2AX assays. These results suggest that AGO2 regulates overall nuclear DNA damage and DDR phenotypes beyond DSB repair through the N-terminal domain rather than the PIWI domain. The potential role of AGO2 in the DDR implies that DNA repair may not be the primary factor for determining susceptibility to genotoxic stress.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Physiology and Biochemistry
Plant Physiology and Biochemistry 生物-植物科学
CiteScore
11.10
自引率
3.10%
发文量
410
审稿时长
33 days
期刊介绍: Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement. Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB. Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信