Photogrammetric determination of movement speed of invasive Indo-Pacific lionfish in the Florida Keys.

IF 2.3 3区 生物学 Q2 MULTIDISCIPLINARY SCIENCES
PeerJ Pub Date : 2025-01-20 eCollection Date: 2025-01-01 DOI:10.7717/peerj.18474
Neal Kolonay, Cassandra N Glaspie
{"title":"Photogrammetric determination of movement speed of invasive Indo-Pacific lionfish in the Florida Keys.","authors":"Neal Kolonay, Cassandra N Glaspie","doi":"10.7717/peerj.18474","DOIUrl":null,"url":null,"abstract":"<p><p>As a key determinant of how efficiently lionfish (<i>Pterois</i> sp.) locate and capture prey, swimming speed plays a crucial role in shaping the predator-prey interactions and broader ecological dynamics within the invaded ecosystems. Swimming speed on a small temporal and spatial scale is difficult to measure because of the need for precise measurements of both distance and duration of the behavior. Using photogrammetry by way of stereo-camera setups is ideal for analyzing the minutiae of lionfish behaviors because it can include the benefits of remote video traps coupled with precise measurements of movements in three-dimensional space and time. The primary objective of this study was to identify and characterize lionfish behavior associated with different movement speeds, and then to quantify small-scale swimming speeds of lionfish associated with those behaviors. Swimming speeds were classified under three different observed behaviors: relaxed swimming, traverse swimming, and striking at prey. The differences between these behaviors were primarily distinguished based on body and fin positioning, as well as the apparent intent of the motion if any was evident. The mean lionfish swimming speed from stereoscopic camera footage was 44.75 mm s<sup>-1</sup> for relaxed swimming, 138.99 mm s<sup>-1</sup> for traverse swimming, and 625.44 mm s<sup>-1</sup> for striking at prey. Swimming speed can be used to quantify how much habitat area a lionfish may cover in a day, and therefore the amount of prey that may be encountered by a predator. Lionfish feeding success under different environmental conditions could be an important factor in understanding their survival and growth in areas where they are found.</p>","PeriodicalId":19799,"journal":{"name":"PeerJ","volume":"13 ","pages":"e18474"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756363/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7717/peerj.18474","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

As a key determinant of how efficiently lionfish (Pterois sp.) locate and capture prey, swimming speed plays a crucial role in shaping the predator-prey interactions and broader ecological dynamics within the invaded ecosystems. Swimming speed on a small temporal and spatial scale is difficult to measure because of the need for precise measurements of both distance and duration of the behavior. Using photogrammetry by way of stereo-camera setups is ideal for analyzing the minutiae of lionfish behaviors because it can include the benefits of remote video traps coupled with precise measurements of movements in three-dimensional space and time. The primary objective of this study was to identify and characterize lionfish behavior associated with different movement speeds, and then to quantify small-scale swimming speeds of lionfish associated with those behaviors. Swimming speeds were classified under three different observed behaviors: relaxed swimming, traverse swimming, and striking at prey. The differences between these behaviors were primarily distinguished based on body and fin positioning, as well as the apparent intent of the motion if any was evident. The mean lionfish swimming speed from stereoscopic camera footage was 44.75 mm s-1 for relaxed swimming, 138.99 mm s-1 for traverse swimming, and 625.44 mm s-1 for striking at prey. Swimming speed can be used to quantify how much habitat area a lionfish may cover in a day, and therefore the amount of prey that may be encountered by a predator. Lionfish feeding success under different environmental conditions could be an important factor in understanding their survival and growth in areas where they are found.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ
PeerJ MULTIDISCIPLINARY SCIENCES-
CiteScore
4.70
自引率
3.70%
发文量
1665
审稿时长
10 weeks
期刊介绍: PeerJ is an open access peer-reviewed scientific journal covering research in the biological and medical sciences. At PeerJ, authors take out a lifetime publication plan (for as little as $99) which allows them to publish articles in the journal for free, forever. PeerJ has 5 Nobel Prize Winners on the Board; they have won several industry and media awards; and they are widely recognized as being one of the most interesting recent developments in academic publishing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信