{"title":"A Novel Peptide Mapping Method Utilizing Cysteine as a Reducing Agent.","authors":"Jun-Ting Fang, Si-Tao Wang, Haibin Wang, Wei-Jie Fang","doi":"10.1007/s11095-024-03805-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purposes: </strong>In the peptide mapping reduction process for monoclonal antibodies (mAbs) and other proteins, the conventional reducing reagents β-mercaptoethanol (β-ME) and dithiothreitol (DTT) pose challenges due to their strong odor and toxicity at high concentrations. Cysteine (Cys), an essential amino acid for new protein synthesis, is an overlooked, nontoxic, and odorless reducing agent. This study presents a novel peptide mapping method using Cys as the reducing agent.</p><p><strong>Methods: </strong>We explored the reducing effect of Cys at different concentrations and pH levels for peptide mapping analysis of a specific mAb (mAb-1), using DTT as a positive control. RP-HPLC analysis, including UV chromatogram comparison and overall similarity calculation, was conducted for comparison. LC-MS analysis was subsequently utilized to characterize the primary sequence of mAb-1. We also applied the method to other mAbs or proteins to demonstrate its wide applicability.</p><p><strong>Results: </strong>The UV chromatogram and overall similarity of Cys as a reducing agent at concentrations ranging from 10 to 40 mM and pH levels between 7.0 and 11.0 were consistent with those of the positive control. Reduced concentrations of Cys or lower pH levels compromised reducing efficacy. This novel reducing method proficiently characterized the primary sequence of mAb-1, achieving an overall sequence coverage of 97%. In the analysis of other mAbs or proteins, the peptide mapping results also showed high consistency.</p><p><strong>Conclusions: </strong>Cys exhibits a reducing ability comparable to DTT and possesses the advantageous characteristics of being nontoxic and odorless, making it a potential alternative for disulfide bond reduction and peptide mapping analysis of proteins and mAbs.</p>","PeriodicalId":20027,"journal":{"name":"Pharmaceutical Research","volume":" ","pages":"173-184"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11095-024-03805-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Purposes: In the peptide mapping reduction process for monoclonal antibodies (mAbs) and other proteins, the conventional reducing reagents β-mercaptoethanol (β-ME) and dithiothreitol (DTT) pose challenges due to their strong odor and toxicity at high concentrations. Cysteine (Cys), an essential amino acid for new protein synthesis, is an overlooked, nontoxic, and odorless reducing agent. This study presents a novel peptide mapping method using Cys as the reducing agent.
Methods: We explored the reducing effect of Cys at different concentrations and pH levels for peptide mapping analysis of a specific mAb (mAb-1), using DTT as a positive control. RP-HPLC analysis, including UV chromatogram comparison and overall similarity calculation, was conducted for comparison. LC-MS analysis was subsequently utilized to characterize the primary sequence of mAb-1. We also applied the method to other mAbs or proteins to demonstrate its wide applicability.
Results: The UV chromatogram and overall similarity of Cys as a reducing agent at concentrations ranging from 10 to 40 mM and pH levels between 7.0 and 11.0 were consistent with those of the positive control. Reduced concentrations of Cys or lower pH levels compromised reducing efficacy. This novel reducing method proficiently characterized the primary sequence of mAb-1, achieving an overall sequence coverage of 97%. In the analysis of other mAbs or proteins, the peptide mapping results also showed high consistency.
Conclusions: Cys exhibits a reducing ability comparable to DTT and possesses the advantageous characteristics of being nontoxic and odorless, making it a potential alternative for disulfide bond reduction and peptide mapping analysis of proteins and mAbs.
期刊介绍:
Pharmaceutical Research, an official journal of the American Association of Pharmaceutical Scientists, is committed to publishing novel research that is mechanism-based, hypothesis-driven and addresses significant issues in drug discovery, development and regulation. Current areas of interest include, but are not limited to:
-(pre)formulation engineering and processing-
computational biopharmaceutics-
drug delivery and targeting-
molecular biopharmaceutics and drug disposition (including cellular and molecular pharmacology)-
pharmacokinetics, pharmacodynamics and pharmacogenetics.
Research may involve nonclinical and clinical studies, and utilize both in vitro and in vivo approaches. Studies on small drug molecules, pharmaceutical solid materials (including biomaterials, polymers and nanoparticles) biotechnology products (including genes, peptides, proteins and vaccines), and genetically engineered cells are welcome.