Performance of Radiomics-based machine learning and deep learning-based methods in the prediction of tumor grade in meningioma: a systematic review and meta-analysis.

IF 2.5 3区 医学 Q2 CLINICAL NEUROLOGY
Roozbeh Tavanaei, Mohammadhosein Akhlaghpasand, Alireza Alikhani, Bardia Hajikarimloo, Ali Ansari, Raymund L Yong, Konstantinos Margetis
{"title":"Performance of Radiomics-based machine learning and deep learning-based methods in the prediction of tumor grade in meningioma: a systematic review and meta-analysis.","authors":"Roozbeh Tavanaei, Mohammadhosein Akhlaghpasand, Alireza Alikhani, Bardia Hajikarimloo, Ali Ansari, Raymund L Yong, Konstantinos Margetis","doi":"10.1007/s10143-025-03236-3","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, the World Health Organization (WHO) grade of meningiomas is determined based on the biopsy results. Therefore, accurate non-invasive preoperative grading could significantly improve treatment planning and patient outcomes. Considering recent advances in machine learning (ML) and deep learning (DL), this meta-analysis aimed to evaluate the performance of these models in predicting the WHO meningioma grade using imaging data. A systematic search was performed in PubMed/MEDLINE, Embase, and the Cochrane Library for studies published up to April 1, 2024, and reporting the performance metrics of the ML models in predicting of WHO meningioma grade using imaging studies. Pooled area under the receiver operating characteristics curve (AUROC), specificity, and sensitivity were estimated. Subgroup and meta-regression analyses were performed based on a number of potential influencing variables. A total of 32 studies with 15,365 patients were included in the present study. The overall pooled sensitivity, specificity, and AUROC of ML methods for prediction of tumor grade in meningioma were 85% (95% CI, 79-89%), 87% (95% CI, 81-91%), and 93% (95% CI, 90-95%), respectively. Both the type of validation and study cohort (training or test) were significantly associated with model performance. However, no significant association was found between the sample size or the type of ML method and model performance. The ML predictive models show a high overall performance in predicting the WHO meningioma grade using imaging data. Further studies on the performance of DL algorithms in larger datasets using external validation are needed.</p>","PeriodicalId":19184,"journal":{"name":"Neurosurgical Review","volume":"48 1","pages":"78"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurosurgical Review","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10143-025-03236-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, the World Health Organization (WHO) grade of meningiomas is determined based on the biopsy results. Therefore, accurate non-invasive preoperative grading could significantly improve treatment planning and patient outcomes. Considering recent advances in machine learning (ML) and deep learning (DL), this meta-analysis aimed to evaluate the performance of these models in predicting the WHO meningioma grade using imaging data. A systematic search was performed in PubMed/MEDLINE, Embase, and the Cochrane Library for studies published up to April 1, 2024, and reporting the performance metrics of the ML models in predicting of WHO meningioma grade using imaging studies. Pooled area under the receiver operating characteristics curve (AUROC), specificity, and sensitivity were estimated. Subgroup and meta-regression analyses were performed based on a number of potential influencing variables. A total of 32 studies with 15,365 patients were included in the present study. The overall pooled sensitivity, specificity, and AUROC of ML methods for prediction of tumor grade in meningioma were 85% (95% CI, 79-89%), 87% (95% CI, 81-91%), and 93% (95% CI, 90-95%), respectively. Both the type of validation and study cohort (training or test) were significantly associated with model performance. However, no significant association was found between the sample size or the type of ML method and model performance. The ML predictive models show a high overall performance in predicting the WHO meningioma grade using imaging data. Further studies on the performance of DL algorithms in larger datasets using external validation are needed.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurosurgical Review
Neurosurgical Review 医学-临床神经学
CiteScore
5.60
自引率
7.10%
发文量
191
审稿时长
6-12 weeks
期刊介绍: The goal of Neurosurgical Review is to provide a forum for comprehensive reviews on current issues in neurosurgery. Each issue contains up to three reviews, reflecting all important aspects of one topic (a disease or a surgical approach). Comments by a panel of experts within the same issue complete the topic. By providing comprehensive coverage of one topic per issue, Neurosurgical Review combines the topicality of professional journals with the indepth treatment of a monograph. Original papers of high quality are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信