Multifunctional drug delivery nanoparticles for combined chemotherapy/chemodynamic/photothermal therapy against colorectal cancer through synergistic cuproptosis/ferroptosis/apoptosis

IF 8.7 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Xiuzhang Yan , Heshi Liu , Lei Guo , Chang Liu , Shichen Zhang , Xue Wang , Yixin Tang , Rui Zhou , Xin Jiang , Erlei Wang , Shuohui Gao , Caina Xu
{"title":"Multifunctional drug delivery nanoparticles for combined chemotherapy/chemodynamic/photothermal therapy against colorectal cancer through synergistic cuproptosis/ferroptosis/apoptosis","authors":"Xiuzhang Yan ,&nbsp;Heshi Liu ,&nbsp;Lei Guo ,&nbsp;Chang Liu ,&nbsp;Shichen Zhang ,&nbsp;Xue Wang ,&nbsp;Yixin Tang ,&nbsp;Rui Zhou ,&nbsp;Xin Jiang ,&nbsp;Erlei Wang ,&nbsp;Shuohui Gao ,&nbsp;Caina Xu","doi":"10.1016/j.mtbio.2024.101427","DOIUrl":null,"url":null,"abstract":"<div><div>The use of combination therapies that employ a variety of cell death mechanisms has emerged as a promising avenue of research in the treatment of cancer. However, the optimization of therapeutic synergies when integrating different modes remains a significant challenge. To this end, we developed a multifunctional intelligent drug-carrying nanoparticle (DFMTCH NPs) based on the metal-organic framework MIL-100, loaded with doxorubicin (DOX) and disulfiram (DSF), coated with a Cu-tannic acid (Cu-TA) network and hyaluronic acid (HA), for the purpose of combined chemotherapy/chemodynamic/photothermal anti-cancer therapy. On the one hand, the DFMTCH NPs exhibited a range of therapeutic capabilities, including chemotherapy, photothermal therapy (PTT), and chemodynamic therapy (CDT), which collectively enhanced the anti-tumor efficacy of chemotherapeutic agents. In addition, DFMTCH NPs proved sensitive photoacoustic imaging (PAI) in image-guided therapy. On the other hand, DFMTCH NPs could produce reactive oxygen species (ROS) and consume glutathione (GSH) by amplifying cellular oxidative stress, while causing intracellular mitochondrial dysfunction, inducing effective cuproptosis/ferroptosis/apoptosis to inhibit tumor growth. Collectively, this work provided an innovative strategy for designing multifunctional nanoparticles for effective combination therapies to combat colorectal cancer (CRC).</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"30 ","pages":"Article 101427"},"PeriodicalIF":8.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754682/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006424004885","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The use of combination therapies that employ a variety of cell death mechanisms has emerged as a promising avenue of research in the treatment of cancer. However, the optimization of therapeutic synergies when integrating different modes remains a significant challenge. To this end, we developed a multifunctional intelligent drug-carrying nanoparticle (DFMTCH NPs) based on the metal-organic framework MIL-100, loaded with doxorubicin (DOX) and disulfiram (DSF), coated with a Cu-tannic acid (Cu-TA) network and hyaluronic acid (HA), for the purpose of combined chemotherapy/chemodynamic/photothermal anti-cancer therapy. On the one hand, the DFMTCH NPs exhibited a range of therapeutic capabilities, including chemotherapy, photothermal therapy (PTT), and chemodynamic therapy (CDT), which collectively enhanced the anti-tumor efficacy of chemotherapeutic agents. In addition, DFMTCH NPs proved sensitive photoacoustic imaging (PAI) in image-guided therapy. On the other hand, DFMTCH NPs could produce reactive oxygen species (ROS) and consume glutathione (GSH) by amplifying cellular oxidative stress, while causing intracellular mitochondrial dysfunction, inducing effective cuproptosis/ferroptosis/apoptosis to inhibit tumor growth. Collectively, this work provided an innovative strategy for designing multifunctional nanoparticles for effective combination therapies to combat colorectal cancer (CRC).

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
4.90%
发文量
303
审稿时长
30 days
期刊介绍: Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).
文献相关原料
公司名称
产品信息
阿拉丁
DOX
阿拉丁
5,5′-Dithio bis-(2-nitrobenzoic acid) (DTNB)
阿拉丁
methylene blue (MB)
阿拉丁
tannic acid (TA)
阿拉丁
FeCl3·6H2O
阿拉丁
1,3,5-Benzenetricarboxylic acid (BTC)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信