The causal relationship between steroid hormones and risk of stroke: evidence from a two-sample Mendelian randomization study.

IF 3.3 3区 医学 Q2 NEUROSCIENCES
Yang Zhang, Miaowen Jiang, Di Wu, Ming Li, Xunming Ji
{"title":"The causal relationship between steroid hormones and risk of stroke: evidence from a two-sample Mendelian randomization study.","authors":"Yang Zhang, Miaowen Jiang, Di Wu, Ming Li, Xunming Ji","doi":"10.1186/s13041-025-01173-2","DOIUrl":null,"url":null,"abstract":"<p><p>It is unclear how steroid hormones contribute to stroke, and conducting randomized controlled trials to obtain related evidence is challenging. Therefore, Mendelian randomization (MR) technique was employed in this study to examine this association. Through genome-wide association meta-analysis, the genetic variants of steroid hormones, including testosterone/17β-estradiol (T/E2) ratio, aldosterone, androstenedione, progesterone, and hydroxyprogesterone, were acquired as instrumental variables. Analysis was done on the impact of these steroid hormones on the risk of stroke subtypes. The T/E2 ratio was associated to an elevated risk of small vessel stroke (SVS) according to the inverse variance weighted approach which was the main MR analytic technique (OR, 1.23, 95% CI: 1.05-1.44, p = 0.009). These findings were solid since no heterogeneity nor horizontal pleiotropy were found. The causal association between T/E2 and SVS was also confirmed in the replication study (p = 0.009). Nevertheless, there was no proof that other steroid hormones increased the risk of stroke. According to this study, T/E2 ratio and SVS are causally related. However, strong evidence for the impact of other steroid hormones on stroke subtypes is still lacking. These findings may be beneficial for developing stroke prevention strategies from steroid hormones levels.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":"18 1","pages":"6"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758733/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13041-025-01173-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

It is unclear how steroid hormones contribute to stroke, and conducting randomized controlled trials to obtain related evidence is challenging. Therefore, Mendelian randomization (MR) technique was employed in this study to examine this association. Through genome-wide association meta-analysis, the genetic variants of steroid hormones, including testosterone/17β-estradiol (T/E2) ratio, aldosterone, androstenedione, progesterone, and hydroxyprogesterone, were acquired as instrumental variables. Analysis was done on the impact of these steroid hormones on the risk of stroke subtypes. The T/E2 ratio was associated to an elevated risk of small vessel stroke (SVS) according to the inverse variance weighted approach which was the main MR analytic technique (OR, 1.23, 95% CI: 1.05-1.44, p = 0.009). These findings were solid since no heterogeneity nor horizontal pleiotropy were found. The causal association between T/E2 and SVS was also confirmed in the replication study (p = 0.009). Nevertheless, there was no proof that other steroid hormones increased the risk of stroke. According to this study, T/E2 ratio and SVS are causally related. However, strong evidence for the impact of other steroid hormones on stroke subtypes is still lacking. These findings may be beneficial for developing stroke prevention strategies from steroid hormones levels.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Brain
Molecular Brain NEUROSCIENCES-
CiteScore
7.30
自引率
0.00%
发文量
97
审稿时长
>12 weeks
期刊介绍: Molecular Brain is an open access, peer-reviewed journal that considers manuscripts on all aspects of studies on the nervous system at the molecular, cellular, and systems level providing a forum for scientists to communicate their findings. Molecular brain research is a rapidly expanding research field in which integrative approaches at the genetic, molecular, cellular and synaptic levels yield key information about the physiological and pathological brain. These studies involve the use of a wide range of modern techniques in molecular biology, genomics, proteomics, imaging and electrophysiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信