Calothrixin B by docking JAK2 is a potential therapeutic inhibitor for pancreatic ductal adenocarcinoma.

IF 3.2 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Yang Wang, Sayed S Esa, Rongji Yu, Sherif Abdelaziz Ibrahim, Yixin Li, Zhi Sheng, Jinzheng Wu, Hao Jiang, Xiaotang Di, Doudou Wen, Sheng Liu, Shubing Zhang
{"title":"Calothrixin B by docking JAK2 is a potential therapeutic inhibitor for pancreatic ductal adenocarcinoma.","authors":"Yang Wang, Sayed S Esa, Rongji Yu, Sherif Abdelaziz Ibrahim, Yixin Li, Zhi Sheng, Jinzheng Wu, Hao Jiang, Xiaotang Di, Doudou Wen, Sheng Liu, Shubing Zhang","doi":"10.1093/jpp/rgae149","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Pancreatic cancer, a highly invasive and prognostically unfavorable malignant tumor, consistently exhibits resistance to conventional chemotherapy, leading to substantial side effects and diminished patient quality of life. This highlights the critical need for the discovery of novel, effective, and safe chemotherapy drugs. This study aimed to explore bioactive compounds, particularly natural products, as an alternative for JAK2 protein inhibitor in cancer treatment.</p><p><strong>Methods: </strong>Molecular docking, molecular dynamics, and Western blot experiments were conducted to verify the binding of Calothrixin B to JAK2 and its inhibitory effect on the JAK2-STAT3 signaling axis.</p><p><strong>Key findings: </strong>Recognizing the significant impact of JAK-STAT3 signaling pathway in pancreatic cancer, we screened the Zinc database to discover potential JAK2 inhibitors, and identified the small molecule Calothrixin B as a promising drug. Molecular simulations revealed stable interactions and the formation of hydrogen bonds between Calothrixin B and specific amino acids (Asp 994, Leu 855, and Arg 980) after a 100 ns simulation. Furthermore, we show that Calothrixin B inhibited the activity of the JAK2-STAT3 signaling pathway, arrested pancreatic cancer cells in the G1 phase, induced apoptosis, and significantly inhibited cell migration. Moreover, in vivo on a subcutaneous tumor model in nude mice confirmed that Calothrixin B effectively inhibited tumor growth in nude mice. In addition, the combination of Carlothrixin B and gemcitabine had a better inhibitory effect on pancreatic cancer cells.</p><p><strong>Conclusion: </strong>These findings introduce new avenues for Calothrixin B as promising therapy for pancreatic cancer.</p>","PeriodicalId":16960,"journal":{"name":"Journal of Pharmacy and Pharmacology","volume":" ","pages":"404-417"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacy and Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jpp/rgae149","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Pancreatic cancer, a highly invasive and prognostically unfavorable malignant tumor, consistently exhibits resistance to conventional chemotherapy, leading to substantial side effects and diminished patient quality of life. This highlights the critical need for the discovery of novel, effective, and safe chemotherapy drugs. This study aimed to explore bioactive compounds, particularly natural products, as an alternative for JAK2 protein inhibitor in cancer treatment.

Methods: Molecular docking, molecular dynamics, and Western blot experiments were conducted to verify the binding of Calothrixin B to JAK2 and its inhibitory effect on the JAK2-STAT3 signaling axis.

Key findings: Recognizing the significant impact of JAK-STAT3 signaling pathway in pancreatic cancer, we screened the Zinc database to discover potential JAK2 inhibitors, and identified the small molecule Calothrixin B as a promising drug. Molecular simulations revealed stable interactions and the formation of hydrogen bonds between Calothrixin B and specific amino acids (Asp 994, Leu 855, and Arg 980) after a 100 ns simulation. Furthermore, we show that Calothrixin B inhibited the activity of the JAK2-STAT3 signaling pathway, arrested pancreatic cancer cells in the G1 phase, induced apoptosis, and significantly inhibited cell migration. Moreover, in vivo on a subcutaneous tumor model in nude mice confirmed that Calothrixin B effectively inhibited tumor growth in nude mice. In addition, the combination of Carlothrixin B and gemcitabine had a better inhibitory effect on pancreatic cancer cells.

Conclusion: These findings introduce new avenues for Calothrixin B as promising therapy for pancreatic cancer.

钙激菌素B对接JAK2是一种潜在的胰腺导管腺癌治疗抑制剂。
目的:胰腺癌是一种高度侵袭性和预后不利的恶性肿瘤,一贯表现出对常规化疗的耐药性,导致严重的副作用和患者生活质量下降。这凸显了发现新的、有效的、安全的化疗药物的迫切需要。本研究旨在探索生物活性化合物,特别是天然产物,作为JAK2蛋白抑制剂在癌症治疗中的替代品。方法:通过分子对接、分子动力学和Western blot实验验证钙激菌素B与JAK2的结合及其对JAK2- stat3信号轴的抑制作用。主要发现:认识到JAK-STAT3信号通路在胰腺癌中的重要影响,我们筛选了Zinc数据库以发现潜在的JAK2抑制剂,并确定了小分子Calothrixin B作为一种有前景的药物。经过100 ns的模拟,Calothrixin B与特定氨基酸(Asp 994、Leu 855和Arg 980)之间形成了稳定的相互作用和氢键。此外,我们发现Calothrixin B抑制JAK2-STAT3信号通路的活性,使胰腺癌细胞处于G1期,诱导凋亡,并显著抑制细胞迁移。此外,在裸鼠皮下肿瘤模型的体内实验中证实了钙thrixin B能有效抑制裸鼠肿瘤的生长。此外,Carlothrixin B联合吉西他滨对胰腺癌细胞有较好的抑制作用。结论:这些发现为钙激菌素B治疗胰腺癌提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
0.00%
发文量
91
审稿时长
3 months
期刊介绍: JPP keeps pace with new research on how drug action may be optimized by new technologies, and attention is given to understanding and improving drug interactions in the body. At the same time, the journal maintains its established and well-respected core strengths in areas such as pharmaceutics and drug delivery, experimental and clinical pharmacology, biopharmaceutics and drug disposition, and drugs from natural sources. JPP publishes at least one special issue on a topical theme each year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信