Folic acid-modified ginger-derived extracellular vesicles for targeted treatment of rheumatoid arthritis by remodeling immune microenvironment via the PI3K-AKT pathway.

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Ruina Han, Dongyang Zhou, Ning Ji, Zhifeng Yin, Jian Wang, Qin Zhang, Hao Zhang, Jinlong Liu, Xinru Liu, Han Liu, Qinglin Han, Jiacan Su
{"title":"Folic acid-modified ginger-derived extracellular vesicles for targeted treatment of rheumatoid arthritis by remodeling immune microenvironment via the PI3K-AKT pathway.","authors":"Ruina Han, Dongyang Zhou, Ning Ji, Zhifeng Yin, Jian Wang, Qin Zhang, Hao Zhang, Jinlong Liu, Xinru Liu, Han Liu, Qinglin Han, Jiacan Su","doi":"10.1186/s12951-025-03096-5","DOIUrl":null,"url":null,"abstract":"<p><p>Rheumatoid arthritis (RA), a form of autoimmune inflammation, is marked by enduring synovial inflammation and the subsequent impairment of joint function. Despite the availability of conventional treatments, they are often marred by significant side effects and the associated high costs. Plant-derived extracellular vesicles (PEVs) offer a compelling alternative, owing to their abundant availability, affordability, low immunogenicity, high biocompatibility, and feasibility for large-scale production. These vesicles enhance intercellular communication by transferring intrinsic bioactive molecules. In our research, we delve into the capacity of PEVs to treat RA, highlighting the role of ginger-derived extracellular vesicles (GDEVs). By conjugating GDEVs with folic acid (FA), we have developed FA-GDEVs that maintain their inherent immunomodulatory properties. FA-GDEVs are designed to selectively target M1 macrophages in inflamed joints via the folate receptors (FRs). Our in vitro findings indicate that FA-GDEVs promote the polarization towards a reparative M2 macrophage phenotype by modulating the PI3K-AKT pathway. Further corroboration comes from in vivo studies, which demonstrate that FA-GDEVs not only concentrate efficiently in the affected joints but also markedly reduce the manifestations of RA. Synthesizing these findings, it is evident that FA-GDEVs emerge as a hopeful candidate for RA treatment, offering benefits such as safety, affordability, and therapeutic efficacy.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"41"},"PeriodicalIF":10.6000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756199/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03096-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Rheumatoid arthritis (RA), a form of autoimmune inflammation, is marked by enduring synovial inflammation and the subsequent impairment of joint function. Despite the availability of conventional treatments, they are often marred by significant side effects and the associated high costs. Plant-derived extracellular vesicles (PEVs) offer a compelling alternative, owing to their abundant availability, affordability, low immunogenicity, high biocompatibility, and feasibility for large-scale production. These vesicles enhance intercellular communication by transferring intrinsic bioactive molecules. In our research, we delve into the capacity of PEVs to treat RA, highlighting the role of ginger-derived extracellular vesicles (GDEVs). By conjugating GDEVs with folic acid (FA), we have developed FA-GDEVs that maintain their inherent immunomodulatory properties. FA-GDEVs are designed to selectively target M1 macrophages in inflamed joints via the folate receptors (FRs). Our in vitro findings indicate that FA-GDEVs promote the polarization towards a reparative M2 macrophage phenotype by modulating the PI3K-AKT pathway. Further corroboration comes from in vivo studies, which demonstrate that FA-GDEVs not only concentrate efficiently in the affected joints but also markedly reduce the manifestations of RA. Synthesizing these findings, it is evident that FA-GDEVs emerge as a hopeful candidate for RA treatment, offering benefits such as safety, affordability, and therapeutic efficacy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信