Zilin Yu, Chunyang Fan, Yubo Mao, Xiexing Wu, Haiqing Mao
{"title":"Autophagy activation alleviates annulus fibrosus degeneration via the miR-2355-5p/mTOR pathway.","authors":"Zilin Yu, Chunyang Fan, Yubo Mao, Xiexing Wu, Haiqing Mao","doi":"10.1186/s13018-025-05492-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Intervertebral disc degeneration disease (IVDD) is a major cause of disability and reduced work productivity worldwide. Annulus fibrosus degeneration is a key contributor to IVDD, yet its mechanisms remain poorly understood. Autophagy, a vital process for cellular homeostasis, involves the lysosomal degradation of cytoplasmic proteins and organelles. This study aimed to investigate the role of autophagy in IVDD using a hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>)-induced model of rat annulus fibrosus cells (AFCs).</p><p><strong>Methods: </strong>AFCs were exposed to H<sub>2</sub>O<sub>2</sub> to model oxidative stress-induced degeneration. Protein expression levels of collagen I, collagen II, MMP3, and MMP13 were quantified. GEO database analysis identified alterations in miR-2355-5p expression, and its regulatory role on the mTOR pathway and autophagy was assessed. Statistical tests were used to evaluate changes in protein expression and pathway activation.</p><p><strong>Results: </strong>H<sub>2</sub>O<sub>2</sub> exposure reduced collagen I and collagen II expression to approximately 50% of baseline levels, while MMP3 and MMP13 expression increased twofold. Activation of autophagy restored collagen I and II expression and decreased MMP3 and MMP13 levels. GEO analysis revealed significant alterations in miR-2355-5p expression, confirming its role in regulating the mTOR pathway and autophagy.</p><p><strong>Conclusions: </strong>Autophagy, mediated by the miR-2355-5p/mTOR pathway, plays a protective role in AFCs degeneration. These findings suggest a potential therapeutic target for mitigating IVDD progression.</p>","PeriodicalId":16629,"journal":{"name":"Journal of Orthopaedic Surgery and Research","volume":"20 1","pages":"86"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755947/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Surgery and Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13018-025-05492-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Intervertebral disc degeneration disease (IVDD) is a major cause of disability and reduced work productivity worldwide. Annulus fibrosus degeneration is a key contributor to IVDD, yet its mechanisms remain poorly understood. Autophagy, a vital process for cellular homeostasis, involves the lysosomal degradation of cytoplasmic proteins and organelles. This study aimed to investigate the role of autophagy in IVDD using a hydrogen peroxide (H2O2)-induced model of rat annulus fibrosus cells (AFCs).
Methods: AFCs were exposed to H2O2 to model oxidative stress-induced degeneration. Protein expression levels of collagen I, collagen II, MMP3, and MMP13 were quantified. GEO database analysis identified alterations in miR-2355-5p expression, and its regulatory role on the mTOR pathway and autophagy was assessed. Statistical tests were used to evaluate changes in protein expression and pathway activation.
Results: H2O2 exposure reduced collagen I and collagen II expression to approximately 50% of baseline levels, while MMP3 and MMP13 expression increased twofold. Activation of autophagy restored collagen I and II expression and decreased MMP3 and MMP13 levels. GEO analysis revealed significant alterations in miR-2355-5p expression, confirming its role in regulating the mTOR pathway and autophagy.
Conclusions: Autophagy, mediated by the miR-2355-5p/mTOR pathway, plays a protective role in AFCs degeneration. These findings suggest a potential therapeutic target for mitigating IVDD progression.
期刊介绍:
Journal of Orthopaedic Surgery and Research is an open access journal that encompasses all aspects of clinical and basic research studies related to musculoskeletal issues.
Orthopaedic research is conducted at clinical and basic science levels. With the advancement of new technologies and the increasing expectation and demand from doctors and patients, we are witnessing an enormous growth in clinical orthopaedic research, particularly in the fields of traumatology, spinal surgery, joint replacement, sports medicine, musculoskeletal tumour management, hand microsurgery, foot and ankle surgery, paediatric orthopaedic, and orthopaedic rehabilitation. The involvement of basic science ranges from molecular, cellular, structural and functional perspectives to tissue engineering, gait analysis, automation and robotic surgery. Implant and biomaterial designs are new disciplines that complement clinical applications.
JOSR encourages the publication of multidisciplinary research with collaboration amongst clinicians and scientists from different disciplines, which will be the trend in the coming decades.