Slowly evolving proteins support the monophyly of Craspedida (Choanoflagellatea) and a marine origin of choanoflagellates

IF 1.9 3区 生物学 Q4 MICROBIOLOGY
Juan J. Ginés-Rivas, Martin Carr
{"title":"Slowly evolving proteins support the monophyly of Craspedida (Choanoflagellatea) and a marine origin of choanoflagellates","authors":"Juan J. Ginés-Rivas,&nbsp;Martin Carr","doi":"10.1016/j.protis.2025.126085","DOIUrl":null,"url":null,"abstract":"<div><div>Choanoflagellate species have been taxonomically divided upon the morphological and developmental basis of their extracellular coat (periplast). Species within the order Craspedida possess a purely organic periplast, whereas taxa of the order Acanthoecida have an additional silica based periplast termed the lorica. Whilst small-scale phylogenetic studies have recovered the two orders as monophyletic, recent phylogenomic analyses have rejected the monophyly of the craspedids. These analyses suggest that the freshwater craspedid <em>Codosiga hollandica</em> falls within the earliest branching choanoflagellate lineage; however, it has also been noted that phylogenomic studies result in inconsistent phylogenies, with unstable long-branched species being recovered as basal choanoflagellates. Presented here are phylogenetic analyses, based upon slowly evolving ribosomal proteins, which consistently recover both craspedid monophyly and a derived placement of <em>C. hollandica</em>. The addition of further, long-branched, ribosomal proteins to phylogenetic analyses are shown to generate longer terminal branches and a weakening of the support for Craspedida. The analyses highlight the requirement for an increase in data, in terms of both taxa and gene coverage, to successfully resolve the earliest craspedid branches. In addition, phylogenetically unstable species are identified that are recommended to be omitted from phylogenomic studies as they have the potential to disrupt recovered relationships.</div></div>","PeriodicalId":20781,"journal":{"name":"Protist","volume":"176 ","pages":"Article 126085"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protist","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S143446102500001X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Choanoflagellate species have been taxonomically divided upon the morphological and developmental basis of their extracellular coat (periplast). Species within the order Craspedida possess a purely organic periplast, whereas taxa of the order Acanthoecida have an additional silica based periplast termed the lorica. Whilst small-scale phylogenetic studies have recovered the two orders as monophyletic, recent phylogenomic analyses have rejected the monophyly of the craspedids. These analyses suggest that the freshwater craspedid Codosiga hollandica falls within the earliest branching choanoflagellate lineage; however, it has also been noted that phylogenomic studies result in inconsistent phylogenies, with unstable long-branched species being recovered as basal choanoflagellates. Presented here are phylogenetic analyses, based upon slowly evolving ribosomal proteins, which consistently recover both craspedid monophyly and a derived placement of C. hollandica. The addition of further, long-branched, ribosomal proteins to phylogenetic analyses are shown to generate longer terminal branches and a weakening of the support for Craspedida. The analyses highlight the requirement for an increase in data, in terms of both taxa and gene coverage, to successfully resolve the earliest craspedid branches. In addition, phylogenetically unstable species are identified that are recommended to be omitted from phylogenomic studies as they have the potential to disrupt recovered relationships.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Protist
Protist 生物-微生物学
CiteScore
3.60
自引率
4.00%
发文量
43
审稿时长
18.7 weeks
期刊介绍: Protist is the international forum for reporting substantial and novel findings in any area of research on protists. The criteria for acceptance of manuscripts are scientific excellence, significance, and interest for a broad readership. Suitable subject areas include: molecular, cell and developmental biology, biochemistry, systematics and phylogeny, and ecology of protists. Both autotrophic and heterotrophic protists as well as parasites are covered. The journal publishes original papers, short historical perspectives and includes a news and views section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信