Label-free imaging flow cytometry for cell classification based directly on multiple off-axis holographic projections.

IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Journal of Biomedical Optics Pub Date : 2025-01-01 Epub Date: 2025-01-23 DOI:10.1117/1.JBO.30.1.016007
Dana Aharoni, Matan Dudaie, Itay Barnea, Natan Tzvi Shaked
{"title":"Label-free imaging flow cytometry for cell classification based directly on multiple off-axis holographic projections.","authors":"Dana Aharoni, Matan Dudaie, Itay Barnea, Natan Tzvi Shaked","doi":"10.1117/1.JBO.30.1.016007","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Imaging flow cytometry allows highly informative multi-point cell analysis for biological assays and medical diagnosis. Rapid processing of the imaged cells during flow allows real-time classification and sorting of the cells. Off-axis holography enables imaging flow cytometry without chemical cell staining but requires digital processing to the optical path delay profile for each frame before the cells can be classified, which slows down the overall processing throughput. We present a method for real-time cell classification via label-free quantitative imaging flow cytometry using digital holography, offering a comprehensive representation of cellular structures, without the need for digital processing before automatic cell classification.</p><p><strong>Aim: </strong>We aim to develop an automatic cell classification scheme based directly on the off-axis holographic projections of the cells during flow and test it for stain-free imaging flow cytometry of white blood cells.</p><p><strong>Approach: </strong>After building a dedicated off-axis holographic microscopy system for acquiring white blood cells during flow, we apply deep-learning classification directly in the off-axis hologram space, rather than in the quantitative phase profile space. This way, we simplify computational processes and allow a significant increase in the cell classification throughput. In addition, by utilizing multiple-viewpoint holographic projections of the cells rotated during flow, instead of using a single projection, we obtain better classification results due to the additional cellular information gained.</p><p><strong>Results: </strong>Our technique demonstrates increasing accuracy with additional viewpoint holographic projections from the optical system, achieving a 7.69% improvement when processing ten interferometric projections compared with a single interferometric projection (regular off-axis hologram). Our technique also outperforms using multiple optical path delay profile projections, requiring off-axis holographic digital preprocessing, by 17.95%, because the holographic projections are analyzed directly without preprocessing and includes the amplitude information as well.</p><p><strong>Conclusions: </strong>Our cell classification approach has great potential for high-throughput, high-content, label-free imaging flow cytometry for classification of large-scale cellular datasets and real-time cell classification during flow in clinical settings.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 1","pages":"016007"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754690/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.30.1.016007","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Significance: Imaging flow cytometry allows highly informative multi-point cell analysis for biological assays and medical diagnosis. Rapid processing of the imaged cells during flow allows real-time classification and sorting of the cells. Off-axis holography enables imaging flow cytometry without chemical cell staining but requires digital processing to the optical path delay profile for each frame before the cells can be classified, which slows down the overall processing throughput. We present a method for real-time cell classification via label-free quantitative imaging flow cytometry using digital holography, offering a comprehensive representation of cellular structures, without the need for digital processing before automatic cell classification.

Aim: We aim to develop an automatic cell classification scheme based directly on the off-axis holographic projections of the cells during flow and test it for stain-free imaging flow cytometry of white blood cells.

Approach: After building a dedicated off-axis holographic microscopy system for acquiring white blood cells during flow, we apply deep-learning classification directly in the off-axis hologram space, rather than in the quantitative phase profile space. This way, we simplify computational processes and allow a significant increase in the cell classification throughput. In addition, by utilizing multiple-viewpoint holographic projections of the cells rotated during flow, instead of using a single projection, we obtain better classification results due to the additional cellular information gained.

Results: Our technique demonstrates increasing accuracy with additional viewpoint holographic projections from the optical system, achieving a 7.69% improvement when processing ten interferometric projections compared with a single interferometric projection (regular off-axis hologram). Our technique also outperforms using multiple optical path delay profile projections, requiring off-axis holographic digital preprocessing, by 17.95%, because the holographic projections are analyzed directly without preprocessing and includes the amplitude information as well.

Conclusions: Our cell classification approach has great potential for high-throughput, high-content, label-free imaging flow cytometry for classification of large-scale cellular datasets and real-time cell classification during flow in clinical settings.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
263
审稿时长
2 months
期刊介绍: The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信