{"title":"Twelve-hour ultradian rhythmic reprogramming of gene expression in the human ovary during aging.","authors":"Lina Chen, Peigen Chen, Yun Xie, Jiayi Guo, Rouzhu Chen, Yingchun Guo, Cong Fang","doi":"10.1007/s10815-024-03339-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The 12-h ultradian rhythm plays a crucial role in metabolic homeostasis, but its role in ovarian aging has not been explored. This study investigates age-related changes in 12-h rhythmic gene expression across various human tissues, with a particular focus on the ovary.</p><p><strong>Methods: </strong>We analyzed transcriptomic data from the GTEx project to examine 12-h ultradian rhythmic gene expression across multiple peripheral human tissues, exploring sex-specific patterns and age-related reprogramming of both 12-h and 24-h rhythmic gene expression.</p><p><strong>Results: </strong>Our findings revealed sex-dimorphic patterns in 12-h rhythmic gene expression, with females exhibiting stronger 12-h rhythms than males. Midlife (ages 40-49) was identified as a critical period for the reprogramming of both 12-h and 24-h rhythmic gene expression. The ovary was notable among other organs due to its high number of genes exhibiting 12-h rhythmic expression and a distinct pattern of rhythmic gene expression reprogramming during aging. This reprogramming involved two gene subsets: one subset adopted de novo 12-h rhythms, while another subset shifted from 24-h rhythms in younger individuals to dual 12-h and 24-h rhythms in middle-aged individuals. Both subsets were primarily associated with angiogenesis.</p><p><strong>Conclusions: </strong>This study is the first to report age-related reprogramming of 12-h rhythms in human tissues, with a particular focus on the amplification of 12-h rhythms in angiogenesis-related genes in the aging ovary. These findings provide novel insights into the mechanisms structured format of the abstract text underlying ovarian aging and suggest potential therapeutic strategies targeting rhythmic gene expression in the ovary.</p>","PeriodicalId":15246,"journal":{"name":"Journal of Assisted Reproduction and Genetics","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Assisted Reproduction and Genetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10815-024-03339-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The 12-h ultradian rhythm plays a crucial role in metabolic homeostasis, but its role in ovarian aging has not been explored. This study investigates age-related changes in 12-h rhythmic gene expression across various human tissues, with a particular focus on the ovary.
Methods: We analyzed transcriptomic data from the GTEx project to examine 12-h ultradian rhythmic gene expression across multiple peripheral human tissues, exploring sex-specific patterns and age-related reprogramming of both 12-h and 24-h rhythmic gene expression.
Results: Our findings revealed sex-dimorphic patterns in 12-h rhythmic gene expression, with females exhibiting stronger 12-h rhythms than males. Midlife (ages 40-49) was identified as a critical period for the reprogramming of both 12-h and 24-h rhythmic gene expression. The ovary was notable among other organs due to its high number of genes exhibiting 12-h rhythmic expression and a distinct pattern of rhythmic gene expression reprogramming during aging. This reprogramming involved two gene subsets: one subset adopted de novo 12-h rhythms, while another subset shifted from 24-h rhythms in younger individuals to dual 12-h and 24-h rhythms in middle-aged individuals. Both subsets were primarily associated with angiogenesis.
Conclusions: This study is the first to report age-related reprogramming of 12-h rhythms in human tissues, with a particular focus on the amplification of 12-h rhythms in angiogenesis-related genes in the aging ovary. These findings provide novel insights into the mechanisms structured format of the abstract text underlying ovarian aging and suggest potential therapeutic strategies targeting rhythmic gene expression in the ovary.
期刊介绍:
The Journal of Assisted Reproduction and Genetics publishes cellular, molecular, genetic, and epigenetic discoveries advancing our understanding of the biology and underlying mechanisms from gametogenesis to offspring health. Special emphasis is placed on the practice and evolution of assisted reproduction technologies (ARTs) with reference to the diagnosis and management of diseases affecting fertility. Our goal is to educate our readership in the translation of basic and clinical discoveries made from human or relevant animal models to the safe and efficacious practice of human ARTs. The scientific rigor and ethical standards embraced by the JARG editorial team ensures a broad international base of expertise guiding the marriage of contemporary clinical research paradigms with basic science discovery. JARG publishes original papers, minireviews, case reports, and opinion pieces often combined into special topic issues that will educate clinicians and scientists with interests in the mechanisms of human development that bear on the treatment of infertility and emerging innovations in human ARTs. The guiding principles of male and female reproductive health impacting pre- and post-conceptional viability and developmental potential are emphasized within the purview of human reproductive health in current and future generations of our species.
The journal is published in cooperation with the American Society for Reproductive Medicine, an organization of more than 8,000 physicians, researchers, nurses, technicians and other professionals dedicated to advancing knowledge and expertise in reproductive biology.