Dietary supplements for prevention of Alzheimer's disease: In vivo and in silico molecular docking studies.

IF 2.1 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL
Doha Abdou Mohamed, Rasha Salah Mohamed, Karem Fouda, Hoda Bakr Mabrok
{"title":"Dietary supplements for prevention of Alzheimer's disease: <i>In vivo</i> and <i>in silico</i> molecular docking studies.","authors":"Doha Abdou Mohamed, Rasha Salah Mohamed, Karem Fouda, Hoda Bakr Mabrok","doi":"10.22038/ijbms.2024.79960.17320","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Alzheimer's disease (AD) is one of the most common neurodegenerative diseases in people over 65. The present research aimed to investigate the potential of different dietary supplements (DS) in preventing AD in an experimental animal model and <i>in silico</i> study.</p><p><strong>Materials and methods: </strong>Three DS containing a mixture of wheat-germ oil and black pepper extract/or turmeric extract were prepared. Total phenolic content, HPLC-phenolic profile, phytosterols content, fatty-acids profile, and anti-oxidant activity were evaluated in all DS. The protective effect of the prepared DS was assessed through their impact on cholinergic neurotransmission and the gene expression of GSK3β, APP, and Akt. Oxidative stress and inflammatory markers were evaluated. The inhibition activities against acetylcholinesterase (AChE) and reduction of amyloid-β aggregation of the major phytochemicals present in the studied DS were evaluated using <i>in silico</i> molecular docking study.</p><p><strong>Results: </strong>Molecular docking revealed that rosmarinic acid and β-Sitosterol exhibited the strongest binding affinities for AChE and Amyloid-β, respectively. The results showed that all DS reduced cholinergic neurotransmission, decreased TNF-α as an inflammatory marker, and improved oxidative stress status. All DS down-regulated the expression of GSK3β and APP while significantly up-regulating the expression of the Akt gene.</p><p><strong>Conclusion: </strong>The present study concluded that all DS enhanced cholinergic neurotransmission, reduced inflammation, and improved oxidative stress status by impacting the expression of GSK3β, Akt, and APP genes. Rosmarinic acid and β-sitosterol showed promising effects for treating AD, according to an <i>in silico</i> molecular docking study. The studied dietary supplements were considered promising candidates for the prevention of AD.</p>","PeriodicalId":14495,"journal":{"name":"Iranian Journal of Basic Medical Sciences","volume":"28 2","pages":"170-180"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756737/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Basic Medical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.22038/ijbms.2024.79960.17320","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Alzheimer's disease (AD) is one of the most common neurodegenerative diseases in people over 65. The present research aimed to investigate the potential of different dietary supplements (DS) in preventing AD in an experimental animal model and in silico study.

Materials and methods: Three DS containing a mixture of wheat-germ oil and black pepper extract/or turmeric extract were prepared. Total phenolic content, HPLC-phenolic profile, phytosterols content, fatty-acids profile, and anti-oxidant activity were evaluated in all DS. The protective effect of the prepared DS was assessed through their impact on cholinergic neurotransmission and the gene expression of GSK3β, APP, and Akt. Oxidative stress and inflammatory markers were evaluated. The inhibition activities against acetylcholinesterase (AChE) and reduction of amyloid-β aggregation of the major phytochemicals present in the studied DS were evaluated using in silico molecular docking study.

Results: Molecular docking revealed that rosmarinic acid and β-Sitosterol exhibited the strongest binding affinities for AChE and Amyloid-β, respectively. The results showed that all DS reduced cholinergic neurotransmission, decreased TNF-α as an inflammatory marker, and improved oxidative stress status. All DS down-regulated the expression of GSK3β and APP while significantly up-regulating the expression of the Akt gene.

Conclusion: The present study concluded that all DS enhanced cholinergic neurotransmission, reduced inflammation, and improved oxidative stress status by impacting the expression of GSK3β, Akt, and APP genes. Rosmarinic acid and β-sitosterol showed promising effects for treating AD, according to an in silico molecular docking study. The studied dietary supplements were considered promising candidates for the prevention of AD.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Iranian Journal of Basic Medical Sciences
Iranian Journal of Basic Medical Sciences MEDICINE, RESEARCH & EXPERIMENTAL-PHARMACOLOGY & PHARMACY
CiteScore
4.00
自引率
4.50%
发文量
142
审稿时长
6-12 weeks
期刊介绍: The Iranian Journal of Basic Medical Sciences (IJBMS) is a peer-reviewed, monthly publication by Mashhad University of Medical Sciences (MUMS), Mashhad, Iran . The Journal of "IJBMS” is a modern forum for scientific communication. Data and information, useful to investigators in any discipline in basic medical sciences mainly including Anatomical Sciences, Biochemistry, Genetics, Immunology, Microbiology, Pathology, Pharmacology, Pharmaceutical Sciences, and Physiology, will be published after they have been peer reviewed. This will also include reviews and multidisciplinary research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信