Optimizing predictions of environmental variables and species distributions on tidal flats by combining Sentinel-2 images and their deep-learning features with OBIA.
IF 3 3区 地球科学Q2 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Logambal Madhuanand, Catharina J M Philippart, Wiebe Nijland, Steven M de Jong, Allert I Bijleveld, Elisabeth A Addink
{"title":"Optimizing predictions of environmental variables and species distributions on tidal flats by combining Sentinel-2 images and their deep-learning features with OBIA.","authors":"Logambal Madhuanand, Catharina J M Philippart, Wiebe Nijland, Steven M de Jong, Allert I Bijleveld, Elisabeth A Addink","doi":"10.1080/01431161.2024.2423909","DOIUrl":null,"url":null,"abstract":"<p><p>Tidal flat ecosystems, are under steady decline due to anthropogenic pressures including sea level rise and climate change. Monitoring and managing these coastal systems requires accurate and up-to-date mapping. Sediment characteristics and macrozoobenthos are major indicators of the environmental status of tidal flats. Field monitoring of these indicators is often restricted by low accessibility and high costs. Despite limitations in spectral contrast, integrating remote sensing with deep learning proved efficient for deriving macrozoobenthos and sediment properties. In this study, we combined deep-learning features derived from Sentinel-2 images and Object-Based Image Analysis (OBIA) to explicitly include spatial aspects in the prediction of tsediment and macrozoobenthos properties of tidal flats , as well as the distribution of four benthic species. The deep-learning features extracted from a convolutional autoencoder model were analysed with OBIA to include spatial, textural, and contextual information. Object sets of varying sizes and shapes based on the spectral bands and/or the deep-learning features, served as the spatial units. These object sets and the field-collected points were used to train the Random Forest prediction model. Predictions were made for the tidal basins Pinkegat and Zoutkamperlaag in the Dutch Wadden Sea for 2018 to 2020. The overall prediction scores of the environmental variables ranged between 0.31 and 0.54. The species-distribution prediction model achieved accuracies ranging from 0.54 to 0.68 for the four benthic species). There was an average improvement of 21% points on predictions using objects with deep learning features compared to the pixel-based predictions with just the spectral bands. The mean spatial unit that captured the patterns best ranged between 0.3 ha and 13 ha for the different variables. Overall, using both OBIA and deep-learning features consistently improved the predictions, making it a valuable combination for monitoring these important environmental variables of coastal regions.</p>","PeriodicalId":14369,"journal":{"name":"International Journal of Remote Sensing","volume":"46 2","pages":"811-834"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755323/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/01431161.2024.2423909","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tidal flat ecosystems, are under steady decline due to anthropogenic pressures including sea level rise and climate change. Monitoring and managing these coastal systems requires accurate and up-to-date mapping. Sediment characteristics and macrozoobenthos are major indicators of the environmental status of tidal flats. Field monitoring of these indicators is often restricted by low accessibility and high costs. Despite limitations in spectral contrast, integrating remote sensing with deep learning proved efficient for deriving macrozoobenthos and sediment properties. In this study, we combined deep-learning features derived from Sentinel-2 images and Object-Based Image Analysis (OBIA) to explicitly include spatial aspects in the prediction of tsediment and macrozoobenthos properties of tidal flats , as well as the distribution of four benthic species. The deep-learning features extracted from a convolutional autoencoder model were analysed with OBIA to include spatial, textural, and contextual information. Object sets of varying sizes and shapes based on the spectral bands and/or the deep-learning features, served as the spatial units. These object sets and the field-collected points were used to train the Random Forest prediction model. Predictions were made for the tidal basins Pinkegat and Zoutkamperlaag in the Dutch Wadden Sea for 2018 to 2020. The overall prediction scores of the environmental variables ranged between 0.31 and 0.54. The species-distribution prediction model achieved accuracies ranging from 0.54 to 0.68 for the four benthic species). There was an average improvement of 21% points on predictions using objects with deep learning features compared to the pixel-based predictions with just the spectral bands. The mean spatial unit that captured the patterns best ranged between 0.3 ha and 13 ha for the different variables. Overall, using both OBIA and deep-learning features consistently improved the predictions, making it a valuable combination for monitoring these important environmental variables of coastal regions.
期刊介绍:
The International Journal of Remote Sensing ( IJRS) is concerned with the theory, science and technology of remote sensing and novel applications of remotely sensed data. The journal’s focus includes remote sensing of the atmosphere, biosphere, cryosphere and the terrestrial earth, as well as human modifications to the earth system. Principal topics include:
• Remotely sensed data collection, analysis, interpretation and display.
• Surveying from space, air, water and ground platforms.
• Imaging and related sensors.
• Image processing.
• Use of remotely sensed data.
• Economic surveys and cost-benefit analyses.
• Drones Section: Remote sensing with unmanned aerial systems (UASs, also known as unmanned aerial vehicles (UAVs), or drones).