Microsomal glutathione transferase 1 confers cisplatin resistance of non-small cell lung cancer via interaction with arachidonate lipoxygenase 5 to repress ferroptosis.

IF 2.1 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL
Jun Yuan, Rui Zhang, Li Liu, Yue-Song Ban, Ce Qin
{"title":"Microsomal glutathione transferase 1 confers cisplatin resistance of non-small cell lung cancer via interaction with arachidonate lipoxygenase 5 to repress ferroptosis.","authors":"Jun Yuan, Rui Zhang, Li Liu, Yue-Song Ban, Ce Qin","doi":"10.22038/ijbms.2024.79203.17160","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Cisplatin (DDP) resistance remains a primary cause of chemotherapy failure and recurrence of non-small cell lung cancer (NSCLC). Abnormal high microsomal glutathione transferase 1 (MGST1) expression has been found in DDP-resistant NSCLC cells. This study aimed to explore the function and mechanism of MGST1 in DDP resistance of NSCLC cells.</p><p><strong>Materials and methods: </strong>The expression levels of target molecules were assessed by quantitative real-time polymerase chain reaction (RT-qPCR) and western blotting. Cell proliferation was evaluated by cell counting kit-8 (CCK-8) and colony formation assays. Ferroptosis was determined by malondialdehyde (MDA), glutathione (GSH), Fe<sup>2+</sup>, and reactive oxygen species (ROS) levels. The interaction between proteins was confirmed by Co-immunoprecipitation (Co-IP). The effect of MGST1 on DDP resistance was evaluated using the tumor xenograft assay in vivo. Immunohistochemical staining was performed to measure Ki-67 and p-H2A.X expression in tumor tissues.</p><p><strong>Results: </strong>MGST1 expression was higher, while arachidonate lipoxygenase 5 (ALOX5) expression was lower in DDP-resistant NSCLC patients and cells. <i>MGST1</i> ablation sensitized NSCLC cells to DDP therapy through inducing ferroptosis. MGST1 protein directly interacted with ALOX5 protein to restrain ALOX5-triggered ferroptosis. Ferroptosis inhibitor or sh-ALOX5 reversed the promotive effect of MGST1 silencing on the DDP sensitivity of NSCLC cells. Finally, <i>MGST1</i> depletion sensitized NSCLC cells to DDP therapy in nude mice <i>in vivo</i>.</p><p><strong>Conclusion: </strong>MGST1 high expression contributed to DDP resistance of NSCLC cells by inhibiting ALOX5-induced ferroptosis. Our results provide a potential therapeutic target for overcoming DDP resistance in NSCLC patients.</p>","PeriodicalId":14495,"journal":{"name":"Iranian Journal of Basic Medical Sciences","volume":"28 2","pages":"209-216"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756726/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Basic Medical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.22038/ijbms.2024.79203.17160","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Cisplatin (DDP) resistance remains a primary cause of chemotherapy failure and recurrence of non-small cell lung cancer (NSCLC). Abnormal high microsomal glutathione transferase 1 (MGST1) expression has been found in DDP-resistant NSCLC cells. This study aimed to explore the function and mechanism of MGST1 in DDP resistance of NSCLC cells.

Materials and methods: The expression levels of target molecules were assessed by quantitative real-time polymerase chain reaction (RT-qPCR) and western blotting. Cell proliferation was evaluated by cell counting kit-8 (CCK-8) and colony formation assays. Ferroptosis was determined by malondialdehyde (MDA), glutathione (GSH), Fe2+, and reactive oxygen species (ROS) levels. The interaction between proteins was confirmed by Co-immunoprecipitation (Co-IP). The effect of MGST1 on DDP resistance was evaluated using the tumor xenograft assay in vivo. Immunohistochemical staining was performed to measure Ki-67 and p-H2A.X expression in tumor tissues.

Results: MGST1 expression was higher, while arachidonate lipoxygenase 5 (ALOX5) expression was lower in DDP-resistant NSCLC patients and cells. MGST1 ablation sensitized NSCLC cells to DDP therapy through inducing ferroptosis. MGST1 protein directly interacted with ALOX5 protein to restrain ALOX5-triggered ferroptosis. Ferroptosis inhibitor or sh-ALOX5 reversed the promotive effect of MGST1 silencing on the DDP sensitivity of NSCLC cells. Finally, MGST1 depletion sensitized NSCLC cells to DDP therapy in nude mice in vivo.

Conclusion: MGST1 high expression contributed to DDP resistance of NSCLC cells by inhibiting ALOX5-induced ferroptosis. Our results provide a potential therapeutic target for overcoming DDP resistance in NSCLC patients.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Iranian Journal of Basic Medical Sciences
Iranian Journal of Basic Medical Sciences MEDICINE, RESEARCH & EXPERIMENTAL-PHARMACOLOGY & PHARMACY
CiteScore
4.00
自引率
4.50%
发文量
142
审稿时长
6-12 weeks
期刊介绍: The Iranian Journal of Basic Medical Sciences (IJBMS) is a peer-reviewed, monthly publication by Mashhad University of Medical Sciences (MUMS), Mashhad, Iran . The Journal of "IJBMS” is a modern forum for scientific communication. Data and information, useful to investigators in any discipline in basic medical sciences mainly including Anatomical Sciences, Biochemistry, Genetics, Immunology, Microbiology, Pathology, Pharmacology, Pharmaceutical Sciences, and Physiology, will be published after they have been peer reviewed. This will also include reviews and multidisciplinary research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信