Advancements in integral inequalities of Ostrowski type via modified Atangana-Baleanu fractional integral operator.

IF 3.4 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Heliyon Pub Date : 2025-01-02 eCollection Date: 2025-01-15 DOI:10.1016/j.heliyon.2024.e41525
Gauhar Rahman, Muhammad Samraiz, Kamal Shah, Thabet Abdeljawad, Yasser Elmasry
{"title":"Advancements in integral inequalities of Ostrowski type via modified Atangana-Baleanu fractional integral operator.","authors":"Gauhar Rahman, Muhammad Samraiz, Kamal Shah, Thabet Abdeljawad, Yasser Elmasry","doi":"10.1016/j.heliyon.2024.e41525","DOIUrl":null,"url":null,"abstract":"<p><p>Convexity and fractional integral operators are closely related due to their fascinating properties in the mathematical sciences. In this article, we first establish an identity for the modified Atangana-Baleanu (MAB) fractional integral operators. Using this identity, we then apply Jensen integral inequality, Young's inequality, power-mean inequality, and Hölder inequality to prove several new generalizations of Ostrowski type inequality for the convexity of <math><mo>|</mo> <mi>ℵ</mi> <mo>|</mo></math> . From the primary findings, we also deduced a few new special cases. The results of this investigation are expected to indicate new advances in the study of fractional integral inequalities.</p>","PeriodicalId":12894,"journal":{"name":"Heliyon","volume":"11 1","pages":"e41525"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755054/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heliyon","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.heliyon.2024.e41525","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/15 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Convexity and fractional integral operators are closely related due to their fascinating properties in the mathematical sciences. In this article, we first establish an identity for the modified Atangana-Baleanu (MAB) fractional integral operators. Using this identity, we then apply Jensen integral inequality, Young's inequality, power-mean inequality, and Hölder inequality to prove several new generalizations of Ostrowski type inequality for the convexity of | | . From the primary findings, we also deduced a few new special cases. The results of this investigation are expected to indicate new advances in the study of fractional integral inequalities.

利用改进的Atangana-Baleanu分数阶积分算子研究Ostrowski型积分不等式的进展。
在数学科学中,凸性算子和分数积分算子有着密切的联系。本文首先建立了修正Atangana-Baleanu (MAB)分数阶积分算子的恒等式。在此基础上,应用Jensen积分不等式、Young不等式、幂均不等式和Hölder不等式证明了Ostrowski型不等式关于| λ |的凸性的几个新推广。根据初步发现,我们还推断出一些新的特殊情况。这一研究结果将预示着分数阶积分不等式研究的新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Heliyon
Heliyon MULTIDISCIPLINARY SCIENCES-
CiteScore
4.50
自引率
2.50%
发文量
2793
期刊介绍: Heliyon is an all-science, open access journal that is part of the Cell Press family. Any paper reporting scientifically accurate and valuable research, which adheres to accepted ethical and scientific publishing standards, will be considered for publication. Our growing team of dedicated section editors, along with our in-house team, handle your paper and manage the publication process end-to-end, giving your research the editorial support it deserves.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信