{"title":"Comparative response mechanisms of two cultivars of <i>Musa paradisiaca L.</i> to <i>Fusarium oxysporum</i> f.sp. <i>cubense</i> infection.","authors":"Yajie Duan, Zhiwei Jia, Zhiwei Lu, Huigang Hu, Rulin Zhan","doi":"10.3389/fpls.2024.1492711","DOIUrl":null,"url":null,"abstract":"<p><p>With the aim of enhancing plants' ability to respond to pathogenic fungi, this study focuses on disease resistance genes. We commenced a series of investigations by capitalizing on the pronounced differences in resistance to Fusarium wilt between resistant and susceptible varieties. Through an in-depth exploration of the metabolic pathways that bolster this defense, we identified genes associated with resistance to <i>Fusarium oxysporum</i> f. sp. <i>cubense</i> (Foc). For our analysis, root tissues from seedlings that had been in contact with <i>Fusarium oxysporum</i> for four days were harvested, including both infected and uninfected samples, which served as our study specimens. The crude extract treatment led to a significant increase in malondialdehyde (MDA) levels, lignin content, and phenylalanine ammonia lyase (PAL) activity. Conversely, there was a notable decline in protein content, ergosterol levels, and pectinase activity. In the control group, it was observed that 4,474 genes in the resistant varieties were significantly up-regulated compared to the susceptible varieties. The functional annotation of these differentially expressed genes (DEGs) emphasized their predominant participation in biological processes. Further analysis via the KEGG database revealed that 14 DEGs in the susceptible varieties were particularly enriched in pathways related to plant hormone signaling. Through the perspective of transcriptome data, we focused on genes associated with lignin and cell wall development for Q-PCR validation. Notably, the expression levels of Macma4_02_g07840 (COMT) and Macma4_10_g06530 (CCOAOMT) were relatively elevated. Our findings suggest that the resistance of these varieties to wilt infection can be ascribed to the accumulation of lignin metabolites, which inhibits pathogenic fungus growth by restricting the synthesis of cellular metabolites. The evidence documented in our research provides a framework for a deeper understanding of the disease resistance mechanisms in bananas, laying a solid theoretical foundation for future studies in this area.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"15 ","pages":"1492711"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754190/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2024.1492711","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
With the aim of enhancing plants' ability to respond to pathogenic fungi, this study focuses on disease resistance genes. We commenced a series of investigations by capitalizing on the pronounced differences in resistance to Fusarium wilt between resistant and susceptible varieties. Through an in-depth exploration of the metabolic pathways that bolster this defense, we identified genes associated with resistance to Fusarium oxysporum f. sp. cubense (Foc). For our analysis, root tissues from seedlings that had been in contact with Fusarium oxysporum for four days were harvested, including both infected and uninfected samples, which served as our study specimens. The crude extract treatment led to a significant increase in malondialdehyde (MDA) levels, lignin content, and phenylalanine ammonia lyase (PAL) activity. Conversely, there was a notable decline in protein content, ergosterol levels, and pectinase activity. In the control group, it was observed that 4,474 genes in the resistant varieties were significantly up-regulated compared to the susceptible varieties. The functional annotation of these differentially expressed genes (DEGs) emphasized their predominant participation in biological processes. Further analysis via the KEGG database revealed that 14 DEGs in the susceptible varieties were particularly enriched in pathways related to plant hormone signaling. Through the perspective of transcriptome data, we focused on genes associated with lignin and cell wall development for Q-PCR validation. Notably, the expression levels of Macma4_02_g07840 (COMT) and Macma4_10_g06530 (CCOAOMT) were relatively elevated. Our findings suggest that the resistance of these varieties to wilt infection can be ascribed to the accumulation of lignin metabolites, which inhibits pathogenic fungus growth by restricting the synthesis of cellular metabolites. The evidence documented in our research provides a framework for a deeper understanding of the disease resistance mechanisms in bananas, laying a solid theoretical foundation for future studies in this area.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.