Jingsong Wang, Qingyuan Zheng, Zhiyuan Chen, Xiuheng Liu, Shanshan Wan, Lei Wang
{"title":"Puerarin alleviates renal ischemia/reperfusion injury by inhibiting apoptosis and endoplasmic reticulum stress via Nrf2/HO-1 pathway.","authors":"Jingsong Wang, Qingyuan Zheng, Zhiyuan Chen, Xiuheng Liu, Shanshan Wan, Lei Wang","doi":"10.22038/ijbms.2024.80438.17412","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To explore the effects of puerarin on renal ischemia/reperfusion injury and the possible mechanism.</p><p><strong>Materials and methods: </strong>The experimental mice were injected with puerarin (50 or 100 mg/kg) per day or equal sterile saline by intraperitoneal injection for one week, and a renal I/R injury model was constructed. HK-2 cells were incubated with puerarin (1 uM and 10 uM) before the H/R model. Immunohistochemistry, immunocytochemistry, and Western blot analysis were used to detect the protein associated with apoptosis and endoplasmic reticulum stress.</p><p><strong>Results: </strong>Puerarin could improve renal function and attenuate tissue structural damage after renal I/R. Meanwhile, puerarin alleviated apoptosis and endoplasmic reticulum stress by decreasing expression levels of specific biomarkers such as caspase-3, GRP78, CHOP, and p-elF2α/ elF2α in animals and HK-2 cells. The up-regulated expression of Nrf2 and HO-1 protein after puerarin treatment indicated that the Nrf2/HO-1 signaling pathway might mediate the protective mechanism of puerarin against renal I/R.</p><p><strong>Conclusion: </strong>Our results suggest that puerarin alleviated renal ischemia/reperfusion injury by inhibiting apoptosis and endoplasmic reticulum stress via the Nrf2/HO-1 pathway and offered new insights for preventing and treating renal I/R.</p>","PeriodicalId":14495,"journal":{"name":"Iranian Journal of Basic Medical Sciences","volume":"28 2","pages":"187-193"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756738/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Basic Medical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.22038/ijbms.2024.80438.17412","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: To explore the effects of puerarin on renal ischemia/reperfusion injury and the possible mechanism.
Materials and methods: The experimental mice were injected with puerarin (50 or 100 mg/kg) per day or equal sterile saline by intraperitoneal injection for one week, and a renal I/R injury model was constructed. HK-2 cells were incubated with puerarin (1 uM and 10 uM) before the H/R model. Immunohistochemistry, immunocytochemistry, and Western blot analysis were used to detect the protein associated with apoptosis and endoplasmic reticulum stress.
Results: Puerarin could improve renal function and attenuate tissue structural damage after renal I/R. Meanwhile, puerarin alleviated apoptosis and endoplasmic reticulum stress by decreasing expression levels of specific biomarkers such as caspase-3, GRP78, CHOP, and p-elF2α/ elF2α in animals and HK-2 cells. The up-regulated expression of Nrf2 and HO-1 protein after puerarin treatment indicated that the Nrf2/HO-1 signaling pathway might mediate the protective mechanism of puerarin against renal I/R.
Conclusion: Our results suggest that puerarin alleviated renal ischemia/reperfusion injury by inhibiting apoptosis and endoplasmic reticulum stress via the Nrf2/HO-1 pathway and offered new insights for preventing and treating renal I/R.
期刊介绍:
The Iranian Journal of Basic Medical Sciences (IJBMS) is a peer-reviewed, monthly publication by Mashhad University of Medical Sciences (MUMS), Mashhad, Iran . The Journal of "IJBMS” is a modern forum for scientific communication. Data and information, useful to investigators in any discipline in basic medical sciences mainly including Anatomical Sciences, Biochemistry, Genetics, Immunology, Microbiology, Pathology, Pharmacology, Pharmaceutical Sciences, and Physiology, will be published after they have been peer reviewed. This will also include reviews and multidisciplinary research.