Shotgun metagenomics reveals the interplay between microbiome diversity and environmental gradients in the first marine protected area in the northern Arabian Gulf.

IF 4 2区 生物学 Q2 MICROBIOLOGY
Frontiers in Microbiology Pub Date : 2025-01-09 eCollection Date: 2024-01-01 DOI:10.3389/fmicb.2024.1479542
Saja A Fakhraldeen, Rakhesh Madhusoodhanan, Nazima Habibi, Sakinah Al-Haddad, Surendraraj Alagarsamy, Sabeena F K Habeebullah, Walid M Al-Zakri, Fathima Thuslim, Loreta Fernandes, Faiza Al-Yamani, Turki Al-Said
{"title":"Shotgun metagenomics reveals the interplay between microbiome diversity and environmental gradients in the first marine protected area in the northern Arabian Gulf.","authors":"Saja A Fakhraldeen, Rakhesh Madhusoodhanan, Nazima Habibi, Sakinah Al-Haddad, Surendraraj Alagarsamy, Sabeena F K Habeebullah, Walid M Al-Zakri, Fathima Thuslim, Loreta Fernandes, Faiza Al-Yamani, Turki Al-Said","doi":"10.3389/fmicb.2024.1479542","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The northwest Arabian Gulf encounters significant anthropogenic pressures, including nutrient enrichment from coastal development and effluent discharge.</p><p><strong>Methods: </strong>This study presents the first shotgun metagenomics-based characterization of microbial communities in Kuwaiti waters of the northwest Arabian Gulf, focusing on Kuwait's first Marine Protected Area (MPA) in Sulaibikhat Bay, a vital nursery ground for commercially important fish.</p><p><strong>Results: </strong>Analysis revealed significantly higher microbial diversity within the MPA compared to adjacent waters, with Rhodobacteraceae (27.8%) and Flavobacteriaceae (15.3%) being dominant. Elevated inorganic phosphorus, nitrogen, and salinity were key factors driving this diversity. Multivariate analysis highlighted phosphate as a critical component affecting the MPA microbial community structure, particularly for the families Microbacteriaceae, Flavobacteriaceae, and Rhodobacteraceae.</p><p><strong>Discussion: </strong>This study underscores the ecological importance of MPAs and highlights the impact of nutrient enrichment and other environmental stressors on microbial diversity, emphasizing the need to reduce nutrient influx to mitigate eutrophication and enhance marine ecosystem resilience in stressed environments.</p>","PeriodicalId":12466,"journal":{"name":"Frontiers in Microbiology","volume":"15 ","pages":"1479542"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755137/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmicb.2024.1479542","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The northwest Arabian Gulf encounters significant anthropogenic pressures, including nutrient enrichment from coastal development and effluent discharge.

Methods: This study presents the first shotgun metagenomics-based characterization of microbial communities in Kuwaiti waters of the northwest Arabian Gulf, focusing on Kuwait's first Marine Protected Area (MPA) in Sulaibikhat Bay, a vital nursery ground for commercially important fish.

Results: Analysis revealed significantly higher microbial diversity within the MPA compared to adjacent waters, with Rhodobacteraceae (27.8%) and Flavobacteriaceae (15.3%) being dominant. Elevated inorganic phosphorus, nitrogen, and salinity were key factors driving this diversity. Multivariate analysis highlighted phosphate as a critical component affecting the MPA microbial community structure, particularly for the families Microbacteriaceae, Flavobacteriaceae, and Rhodobacteraceae.

Discussion: This study underscores the ecological importance of MPAs and highlights the impact of nutrient enrichment and other environmental stressors on microbial diversity, emphasizing the need to reduce nutrient influx to mitigate eutrophication and enhance marine ecosystem resilience in stressed environments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
9.60%
发文量
4837
审稿时长
14 weeks
期刊介绍: Frontiers in Microbiology is a leading journal in its field, publishing rigorously peer-reviewed research across the entire spectrum of microbiology. Field Chief Editor Martin G. Klotz at Washington State University is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信