Maximizing Identification Precision of Hymenoptera and Brachycera (Diptera) With a Non-Destructive DNA Metabarcoding Approach.

IF 2.3 2区 生物学 Q2 ECOLOGY
Ecology and Evolution Pub Date : 2025-01-23 eCollection Date: 2025-01-01 DOI:10.1002/ece3.70770
Isabel C Kilian, Ameli Kirse, Ralph S Peters, Sarah J Bourlat, Vera G Fonseca, Wolfgang J Wägele, Andrée Hamm, Ximo Mengual
{"title":"Maximizing Identification Precision of Hymenoptera and Brachycera (Diptera) With a Non-Destructive DNA Metabarcoding Approach.","authors":"Isabel C Kilian, Ameli Kirse, Ralph S Peters, Sarah J Bourlat, Vera G Fonseca, Wolfgang J Wägele, Andrée Hamm, Ximo Mengual","doi":"10.1002/ece3.70770","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, DNA metabarcoding has been used for a more efficient assessment of bulk samples. However, there remains a paucity of studies examining potential disparities in species identification methodologies. Here, we explore the outcomes of diverse clustering and filtering techniques on data from a non-destructive metabarcoding approach, compared to species-level morphological identification of Brachycera (Diptera) and Hymenoptera of two bulk samples collected with Malaise traps. The study evaluated four distinct approaches, namely clustering to Amplicon Sequence Variants (ASVs) or ASVs clustered to Operational Taxonomic Units (OTUs) coupled with subsequent filtering using the LULU algorithm at 84% and 96% minimum match. In total, 114 species of Brachycera (35 families) and 85 species of Hymenoptera (27 families) were identified morphologically. Depending on the selected approach, DNA metabarcoding results strongly varied in terms of detected molecular units blasted to brachyceran and hymenopteran species. For Brachycera, ASVs clustered into OTUs followed by LULU using a 96% minimum match (OTU96) inferred the number of molecular units closest to the number of morphologically identified species. Using Syrphidae as an exemplary family, we found an overlap ranging from 9% to 81% between the morphological identification and the different clustering and filtering approaches, OTU96 being also here the closest one. For Hymenoptera, while OTU96 also yielded the highest number of molecular units, it was still considerably low compared to the number of morphologically identified species. Our results show that metabarcoding methodology needs to be significantly improved to be applied to Hymenoptera. Conversely, for Brachycera, we acknowledge the promise of employing a non-destructive metabarcoding approach, incorporating ASV clustering into OTUs and filtering with LULU, to derive dependable species lists. Such lists hold significant potential for applications in biomonitoring, conservation efforts, and other related fields.</p>","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":"15 1","pages":"e70770"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756930/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/ece3.70770","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, DNA metabarcoding has been used for a more efficient assessment of bulk samples. However, there remains a paucity of studies examining potential disparities in species identification methodologies. Here, we explore the outcomes of diverse clustering and filtering techniques on data from a non-destructive metabarcoding approach, compared to species-level morphological identification of Brachycera (Diptera) and Hymenoptera of two bulk samples collected with Malaise traps. The study evaluated four distinct approaches, namely clustering to Amplicon Sequence Variants (ASVs) or ASVs clustered to Operational Taxonomic Units (OTUs) coupled with subsequent filtering using the LULU algorithm at 84% and 96% minimum match. In total, 114 species of Brachycera (35 families) and 85 species of Hymenoptera (27 families) were identified morphologically. Depending on the selected approach, DNA metabarcoding results strongly varied in terms of detected molecular units blasted to brachyceran and hymenopteran species. For Brachycera, ASVs clustered into OTUs followed by LULU using a 96% minimum match (OTU96) inferred the number of molecular units closest to the number of morphologically identified species. Using Syrphidae as an exemplary family, we found an overlap ranging from 9% to 81% between the morphological identification and the different clustering and filtering approaches, OTU96 being also here the closest one. For Hymenoptera, while OTU96 also yielded the highest number of molecular units, it was still considerably low compared to the number of morphologically identified species. Our results show that metabarcoding methodology needs to be significantly improved to be applied to Hymenoptera. Conversely, for Brachycera, we acknowledge the promise of employing a non-destructive metabarcoding approach, incorporating ASV clustering into OTUs and filtering with LULU, to derive dependable species lists. Such lists hold significant potential for applications in biomonitoring, conservation efforts, and other related fields.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
3.80%
发文量
1027
审稿时长
3-6 weeks
期刊介绍: Ecology and Evolution is the peer reviewed journal for rapid dissemination of research in all areas of ecology, evolution and conservation science. The journal gives priority to quality research reports, theoretical or empirical, that develop our understanding of organisms and their diversity, interactions between them, and the natural environment. Ecology and Evolution gives prompt and equal consideration to papers reporting theoretical, experimental, applied and descriptive work in terrestrial and aquatic environments. The journal will consider submissions across taxa in areas including but not limited to micro and macro ecological and evolutionary processes, characteristics of and interactions between individuals, populations, communities and the environment, physiological responses to environmental change, population genetics and phylogenetics, relatedness and kin selection, life histories, systematics and taxonomy, conservation genetics, extinction, speciation, adaption, behaviour, biodiversity, species abundance, macroecology, population and ecosystem dynamics, and conservation policy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信