Hyeonoh Kim, Hyun-Young Shin, Mira Park, Keunsun Ahn, Seung-Jin Kim, Sang-Hyun An
{"title":"Exosome-Like Vesicles from <i>Lithospermum erythrorhizon</i> Callus Enhanced Wound Healing by Reducing LPS-Induced Inflammation.","authors":"Hyeonoh Kim, Hyun-Young Shin, Mira Park, Keunsun Ahn, Seung-Jin Kim, Sang-Hyun An","doi":"10.4014/jmb.2410.10022","DOIUrl":null,"url":null,"abstract":"<p><p><i>Lithospermum erythrorhizon</i> (LE), a medicinal plant from the Boraginaceae family, is traditionally used in East Asia for its therapeutic effects on skin conditions, including infections, inflammation, and wounds. Recently, the role of extracellular vesicles (EVs) as mediators of intercellular communication that regulate inflammation and promote tissue regeneration has garnered increasing attention in the field of regenerative medicine. This study investigates exosome-like vesicles derived from LE callus (LELVs) and their potential in enhancing wound healing. <i>In vitro</i> studies using normal human dermal fibroblasts (NHDFs) demonstrated that LELVs significantly improved cell viability, proliferation, and wound closure, while also enhancing collagen type I synthesis, indicating anti-inflammatory and regenerative properties. For in vivo analysis, LELVs were applied to lipopolysaccharide (LPS)-induced wounds in mice, where wound healing progression was monitored over 14 days. LELV-treated wounds exhibited accelerated re-epithelialization, reduced inflammation, and improved tissue remodeling, with histological analysis revealing enhanced collagen deposition and reduced inflammatory cell infiltration. These results highlight the ability of LELVs to modulate the inflammatory response and promote wound healing. With their natural origin, low immunogenicity, and ease of production, LELVs represent a promising alternative to synthetic treatments for inflammation-associated skin injuries and hold significant potential for clinical applications in wound care.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"35 ","pages":"e2410022"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11813354/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4014/jmb.2410.10022","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lithospermum erythrorhizon (LE), a medicinal plant from the Boraginaceae family, is traditionally used in East Asia for its therapeutic effects on skin conditions, including infections, inflammation, and wounds. Recently, the role of extracellular vesicles (EVs) as mediators of intercellular communication that regulate inflammation and promote tissue regeneration has garnered increasing attention in the field of regenerative medicine. This study investigates exosome-like vesicles derived from LE callus (LELVs) and their potential in enhancing wound healing. In vitro studies using normal human dermal fibroblasts (NHDFs) demonstrated that LELVs significantly improved cell viability, proliferation, and wound closure, while also enhancing collagen type I synthesis, indicating anti-inflammatory and regenerative properties. For in vivo analysis, LELVs were applied to lipopolysaccharide (LPS)-induced wounds in mice, where wound healing progression was monitored over 14 days. LELV-treated wounds exhibited accelerated re-epithelialization, reduced inflammation, and improved tissue remodeling, with histological analysis revealing enhanced collagen deposition and reduced inflammatory cell infiltration. These results highlight the ability of LELVs to modulate the inflammatory response and promote wound healing. With their natural origin, low immunogenicity, and ease of production, LELVs represent a promising alternative to synthetic treatments for inflammation-associated skin injuries and hold significant potential for clinical applications in wound care.
期刊介绍:
The Journal of Microbiology and Biotechnology (JMB) is a monthly international journal devoted to the advancement and dissemination of scientific knowledge pertaining to microbiology, biotechnology, and related academic disciplines. It covers various scientific and technological aspects of Molecular and Cellular Microbiology, Environmental Microbiology and Biotechnology, Food Biotechnology, and Biotechnology and Bioengineering (subcategories are listed below). Launched in March 1991, the JMB is published by the Korean Society for Microbiology and Biotechnology (KMB) and distributed worldwide.