The cardiac response of the goldfish Carassius auratus to environmental hypoxia: from hemodynamics to mitochondria.

IF 2.5 3区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Mariacristina Filice, Rosa Mazza, Alfonsina Gattuso, Alessia Caferro, Gaetana Napolitano, Gianluca Fasciolo, Paola Venditti, Sandra Imbrogno, Maria Carmela Cerra
{"title":"The cardiac response of the goldfish Carassius auratus to environmental hypoxia: from hemodynamics to mitochondria.","authors":"Mariacristina Filice, Rosa Mazza, Alfonsina Gattuso, Alessia Caferro, Gaetana Napolitano, Gianluca Fasciolo, Paola Venditti, Sandra Imbrogno, Maria Carmela Cerra","doi":"10.1007/s10695-025-01452-8","DOIUrl":null,"url":null,"abstract":"<p><p>Under low O<sub>2</sub>, the heart of Carassius auratus (goldfish) shows an enhanced hemodynamics. This is observed in ex vivo cardiac preparations from animals acclimated to both normoxia and short-term (4 days) moderate hypoxia and perfused for 90 min with a hypoxic medium. Under short-term hypoxia, this is associated with a higher ventricular muscularity and an expanded mitochondrial compartment. To date, little is known about the putative influence of hypoxia on the mitochondrial contribution to cardiac energy metabolism. Similarly, it remains unexplored whether the exposure to environmental low O<sub>2</sub> affects the cardiac response to preload increases (i.e., the Frank-Starling mechanism). We here observed, on ex vivo isolated and perfused goldfish heart, that 20 days of exposure to moderate water hypoxia are accompanied by a potentiated cardiac performance, analyzed as stroke volume, cardiac output, and stroke work. The sensitivity to preload increases significantly improved after 20 days of hypoxia, while it is similar to normoxia after 4 days of exposure. This suggested a time-dependent response. Mitochondrial O<sub>2</sub> consumption initially decreased during short-term hypoxia but returned to normoxia-like levels after 20 days of exposure. Biomolecular analyses of ventricular extracts revealed a time-dependent regulation of key proteins involved in the mitochondrial biogenesis, including PGC1α, NRF1/2, and TFAM, as well as cytochrome c. Additionally, mitochondrial DNA content was notably increased after 20 days of hypoxia. Our data revealed that, when challenged by chronic environmental hypoxia, the goldfish heart improves its pumping behavior under both basal and loading-stimulated conditions. This is accompanied by a mitochondrial remodeling which likely supports adequate energy supply for the working myocardium.</p>","PeriodicalId":12274,"journal":{"name":"Fish Physiology and Biochemistry","volume":"51 1","pages":"36"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759273/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish Physiology and Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10695-025-01452-8","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Under low O2, the heart of Carassius auratus (goldfish) shows an enhanced hemodynamics. This is observed in ex vivo cardiac preparations from animals acclimated to both normoxia and short-term (4 days) moderate hypoxia and perfused for 90 min with a hypoxic medium. Under short-term hypoxia, this is associated with a higher ventricular muscularity and an expanded mitochondrial compartment. To date, little is known about the putative influence of hypoxia on the mitochondrial contribution to cardiac energy metabolism. Similarly, it remains unexplored whether the exposure to environmental low O2 affects the cardiac response to preload increases (i.e., the Frank-Starling mechanism). We here observed, on ex vivo isolated and perfused goldfish heart, that 20 days of exposure to moderate water hypoxia are accompanied by a potentiated cardiac performance, analyzed as stroke volume, cardiac output, and stroke work. The sensitivity to preload increases significantly improved after 20 days of hypoxia, while it is similar to normoxia after 4 days of exposure. This suggested a time-dependent response. Mitochondrial O2 consumption initially decreased during short-term hypoxia but returned to normoxia-like levels after 20 days of exposure. Biomolecular analyses of ventricular extracts revealed a time-dependent regulation of key proteins involved in the mitochondrial biogenesis, including PGC1α, NRF1/2, and TFAM, as well as cytochrome c. Additionally, mitochondrial DNA content was notably increased after 20 days of hypoxia. Our data revealed that, when challenged by chronic environmental hypoxia, the goldfish heart improves its pumping behavior under both basal and loading-stimulated conditions. This is accompanied by a mitochondrial remodeling which likely supports adequate energy supply for the working myocardium.

金鱼鲫鱼对环境缺氧的心脏反应:从血流动力学到线粒体。
低氧状态下,金鱼心脏血流动力学增强。这是在离体心脏制剂中观察到的,这些离体心脏制剂是由适应正常缺氧和短期(4天)中度缺氧的动物制成的,并在低氧培养基中灌注90分钟。在短期缺氧情况下,这与心室肌肉增加和线粒体室扩大有关。迄今为止,关于缺氧对线粒体对心脏能量代谢的贡献的推定影响知之甚少。同样,暴露于环境低氧是否会影响心脏对预负荷增加的反应(即Frank-Starling机制)仍未研究。我们在离体分离和灌注的金鱼心脏上观察到,暴露于中度缺氧的20天伴随着增强的心脏性能,分析为中风量,心输出量和中风功。缺氧20天后对预负荷增加的敏感性显著提高,暴露4天后与常氧相似。这表明反应与时间有关。线粒体耗氧量最初在短期缺氧期间下降,但在暴露20天后恢复到正常缺氧水平。脑室提取物的生物分子分析显示,参与线粒体生物发生的关键蛋白(包括PGC1α、NRF1/2和TFAM)以及细胞色素c具有时间依赖性。此外,缺氧20天后线粒体DNA含量显著增加。我们的数据显示,当受到慢性环境缺氧的挑战时,金鱼心脏在基础和负荷刺激条件下都能改善其泵送行为。这伴随着线粒体重塑,可能为工作的心肌提供足够的能量供应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fish Physiology and Biochemistry
Fish Physiology and Biochemistry 农林科学-生化与分子生物学
CiteScore
5.60
自引率
6.90%
发文量
106
审稿时长
4 months
期刊介绍: Fish Physiology and Biochemistry is an international journal publishing original research papers in all aspects of the physiology and biochemistry of fishes. Coverage includes experimental work in such topics as biochemistry of organisms, organs, tissues and cells; structure of organs, tissues, cells and organelles related to their function; nutritional, osmotic, ionic, respiratory and excretory homeostasis; nerve and muscle physiology; endocrinology; reproductive physiology; energetics; biochemical and physiological effects of toxicants; molecular biology and biotechnology and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信