Elf autoencoder for unsupervised exploration of flat-band materials using electronic band structure fingerprints.

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Communications Physics Pub Date : 2025-01-01 Epub Date: 2025-01-17 DOI:10.1038/s42005-025-01936-2
Henry Kelbrick Pentz, Thomas Warford, Ivan Timokhin, Hongpeng Zhou, Qian Yang, Anupam Bhattacharya, Artem Mishchenko
{"title":"Elf autoencoder for unsupervised exploration of flat-band materials using electronic band structure fingerprints.","authors":"Henry Kelbrick Pentz, Thomas Warford, Ivan Timokhin, Hongpeng Zhou, Qian Yang, Anupam Bhattacharya, Artem Mishchenko","doi":"10.1038/s42005-025-01936-2","DOIUrl":null,"url":null,"abstract":"<p><p>Two-dimensional materials with flat electronic bands are promising for realising exotic quantum phenomena such as unconventional superconductivity and nontrivial topology. However, exploring their vast chemical space is a significant challenge. Here we introduce elf, an unsupervised convolutional autoencoder that encodes electronic band structure images into fingerprint vectors, enabling the autonomous clustering of materials by electronic properties beyond traditional chemical paradigms. Unsupervised visualisation of the fingerprint space then uncovers hidden chemical trends and identifies promising candidates based on similarities to well-studied exemplars. This approach complements high-throughput ab initio methods by rapidly screening candidates and guiding further investigations into the mechanisms underlying flat-band physics. The elf autoencoder is a powerful tool for autonomous discovery of unexplored flat-band materials, enabling unbiased identification of compounds with desirable electronic properties across the 2D chemical space.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"25"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756449/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s42005-025-01936-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional materials with flat electronic bands are promising for realising exotic quantum phenomena such as unconventional superconductivity and nontrivial topology. However, exploring their vast chemical space is a significant challenge. Here we introduce elf, an unsupervised convolutional autoencoder that encodes electronic band structure images into fingerprint vectors, enabling the autonomous clustering of materials by electronic properties beyond traditional chemical paradigms. Unsupervised visualisation of the fingerprint space then uncovers hidden chemical trends and identifies promising candidates based on similarities to well-studied exemplars. This approach complements high-throughput ab initio methods by rapidly screening candidates and guiding further investigations into the mechanisms underlying flat-band physics. The elf autoencoder is a powerful tool for autonomous discovery of unexplored flat-band materials, enabling unbiased identification of compounds with desirable electronic properties across the 2D chemical space.

Elf自动编码器用于无监督探索平面带材料使用电子带结构指纹。
具有平面电子带的二维材料有望实现非常规超导和非平凡拓扑等奇异量子现象。然而,探索其广阔的化学空间是一项重大挑战。本文介绍了一种无监督卷积自编码器elf,它将电子带结构图像编码为指纹向量,从而超越传统的化学范式,通过电子特性实现材料的自主聚类。然后,对指纹空间进行无监督的可视化,揭示隐藏的化学趋势,并根据与经过充分研究的样本的相似性识别出有希望的候选者。这种方法通过快速筛选候选者和指导进一步研究平带物理机制来补充高通量从头算方法。elf自动编码器是一个强大的工具,用于自主发现未开发的平带材料,能够在二维化学空间中无偏地识别具有理想电子特性的化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信